1887

Abstract

Bacteria that differentiate into highly heat-resistant endospores (HHRS strains) may survive ultrahigh-temperature treatment of milk and germinate in the final product. They do not noticeably spoil the milk and are nonpathogenic. The complete (>96%) 16S rRNA genes from three HHRS strains were identical, and phylogenetic analysis placed them alongside in the group of the genus . Moreover, the approximately 550 nucleotides between regions U2 and U5 were invariant for seven HHRS strains. However, three cloned 16S rRNA genes from one HHRS strain, M215, showed marked size and sequence variations within the V1 and V2 regions. DNA reassociation assays confirmed the distinction between a reference HHRS strain and closely related members of the group, notably, (30%), (28%), and (20%). Ribotyping and pyrolysis mass spectrometry both indicated that the HHRS strains belong to a homogeneous, species-ranked taxon, an exception being strain TP1248, which is slightly atypical. The HHRS strains are unusual in that they grow poorly, if at all, on nutrient agar; good growth is obtained on brain heart infusion agar. On subculture, most HHRS strains form long, filamentous rods which stain unevenly in the Gram reaction. They are strictly aerobic and do not produce acid from sugars. We propose the name for these bacteria, which are phenotypically and phylogenetically distinct from other species. The type strain is M215 (= DSMZ 10599).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-3-759
1996-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/3/ijs-46-3-759.html?itemId=/content/journal/ijsem/10.1099/00207713-46-3-759&mimeType=html&fmt=ahah

References

  1. Aquino de Muro M., Mitchell W. J., Priest F. G. 1992; Differentiation of mosquito-pathogenic strains of Bacillus sphaericus from non-toxic varieties by ribosomal RNA gene restriction patterns. J. Gen. Microbiol 138:1159–1166
    [Google Scholar]
  2. Aquino de Muro M., Priest F. G. 1994; A colony hybridization procedure for the identification of mosquitocidal strains of Bacillus sphaericus on isolation plates. J. Invertebr. Pathol 63:310–313
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem 81:461–466
    [Google Scholar]
  4. Chun J., Atalan E., Ward A. C., Goodfellow M. 1993; Artificial neural network analysis of pyrolysis mass spectrophotometric data in the identification of Streptomyces species. FEMS Microbiol. Lett 107:321–326
    [Google Scholar]
  5. Claus D., Berkeley R. C. W. 1986 Genus Bacillus Cohn 1872. 1105–1139 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  6. De Buyser M. L., Morvan A., Grimont F., Elsolh N. 1989; Characterization of Staphylococcus species by ribosomal RNA gene restriction patterns. J. Gen. Microbiol 135:989–999
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:132–142
    [Google Scholar]
  8. Duquet J. P., Trouvat A., Mouniqua A., Odet G., Cerf O. 1987; Heat resistant spores in milk used in the manufacture of UHT milk. Lait 67:393
    [Google Scholar]
  9. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rates. Biopolymers 19:1315–1327
    [Google Scholar]
  10. Foschino R., Galli A., Ottogali G. 1990; Research on the microflora of UHT milk. Ann. Microbiol 40:47–59
    [Google Scholar]
  11. Goodfellow M., Chun J., Atalan E., Sanglier J.-J. 1994 Curie point pyrolysis mass spectrometry and its application to bacterial systematics. 87–104 Priest F. G., Ramos-Cormenzana A., Tindall B.ed Bacterial diversity and systematics Plenum Press; New York:
    [Google Scholar]
  12. Gordon R. E., Haynes W. C., Pang C. H.-N. 1973 The genus Bacillus. Agriculture handbook no. 427. U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  13. Gray M. W., Sankoff D., Cedergren R. J. 1984; On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 12:5837–5852
    [Google Scholar]
  14. Green C. J., Stewart G. C., Hollis M. A., Void B. S., Bott K. F. 1985; Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rmB. Gene 37:261–266
    [Google Scholar]
  15. Hammer P., Lembke F., Suhren G., Heeschen W. 1995; Characterization of a heat resistant mesophilic Bacillus species affecting quality of UHT- milk-a preliminary report. Kiel. Milchwirtsch. Forschungsber 47:303–311
    [Google Scholar]
  16. Hultman T., Stihl S., Homes E., Uhlen M. 1989; Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res 17:4937–4946
    [Google Scholar]
  17. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. J. Syst. Appl. Microbiol 4:184–192
    [Google Scholar]
  18. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  19. Jaquet C. S., Aubert E. N., Rocourt J. 1992; Use of rRNA gene restriction patterns for the identification of Listeria species. Syst. Appl. Microbiol 15:42–46
    [Google Scholar]
  20. Johansson K.-E., Pettersson B., Uhlen M., Gunnarsson A., Malmqvist M., Olsson E. 1995; Identification of the causative agent of granulocytic ehrlichiosis in Swedish dogs and horses by direct solid phase sequencing of PCR products from the 16S rRNA gene. Res. Vet. Sci 58:109–112
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism 3 Academic Press, Inc.; New York:
    [Google Scholar]
  22. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J. Gen. Microbiol 130:1871–1882
    [Google Scholar]
  23. Mostertj J. F., Luck H., Hussman R. A. 1979; Isolation, identification and practical properties of Bacillus species from UHT and sterilized milk. S. Afr. J. Dairy Technol 11:125–131
    [Google Scholar]
  24. Pettersson B., Johansson K.-E., Uhlen M. 1994; Sequence analysis of 16S rRNA from mycoplasmas by direct solid phase DNA sequencing. Appl. Environ. Microbiol 60:2456–2461
    [Google Scholar]
  25. Pettersson B., Leitner T., Ronaghi M., Bolski G., Uhlen M., Johansson K.-E. The phylogeny of the Mycoplasma mycoides cluster as determined by sequence analysis of the 16S rRNA genes from the two rRNA operons. J. Bacteriol in press
    [Google Scholar]
  26. Pichonoty F. 1984; Description de la souche type de Bacillus badius, Ann. Microbiol. (Paris) 135B:21–27
    [Google Scholar]
  27. Pichonoty F., Asselineau J., Mandel M. 1984; Caracterisation biochemique de Bacillus benzoevorans sp. nov., a nouvelle espece filamenteuse, engainee et mesophile, degradant divers acides aromatiques et phenols. Ann. Microbiol. (Paris) 135B:209–217
    [Google Scholar]
  28. Priest F. G., Alexander B. 1988; A frequency matrix for probabilistic identification of some bacilli. J. Gen. Microbiol 134:3011–3018
    [Google Scholar]
  29. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus. J. Gen. Microbiol 134:1847–1882
    [Google Scholar]
  30. Priest F. G., Koji D. A., Rosato Y. B., Canhos V. P. 1994; Characterization of Bacillus thuringiensis and related bacteria by ribosomal RNA gene restriction fragment length polymorphisms. Microbiology 140:1015–1022
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  32. Saunders N. A., Harrison T. G., Kachwalla N., Taylor A. G. 1980; Identification of species of the genus Legionella using a cloned rRNA gene from Legionella pneumophila. J. Gen. Microbiol 134:2363–2374
    [Google Scholar]
  33. Shida O., Takagi H., Kadowaki K., Yano H., Abe M., Udaka S., Komagata K. 1994; Bacillus aneurinofyticus sp. nov. Int. J. Syst. Bacteriol 44:143–150
    [Google Scholar]
  34. Tamaoka J., Komogata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett 25:125–128
    [Google Scholar]
  35. Verger J. M., Grimont F., Grimont P. A. D., Grayon M. 1987; Taxonomy of the genus Brucella. Ann. Inst. Pasteur 138:235–238
    [Google Scholar]
  36. Westhoff D. C., Dougherty S. L. 1981; Characterization of Bacillus species isolated from spoiled ultrahigh temperature processed milk. J. Dairy Sci 64:572–580
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-3-759
Loading
/content/journal/ijsem/10.1099/00207713-46-3-759
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error