1887

Abstract

A polyphasic approach was used to determine the relationships between well-characterized reference strains representing all seven species. One Centers for Disease Control (CDC) group DF-3 strain, a presumed relative of the genus , and 15 field isolates were included as well. Fourteen isolates were assigned to named species, all of which could be differentiated by means of whole-organism protein electrophoresis. A separate position was occupied by the CDC group DF-3 strain and by one field isolate representing a novel species. The phylogenetic position of each taxon was determined by means of 16S rRNA sequence analysis. A considerable genotypic heterogeneity within the genus was detected in spite of the minimal phenotypic differences. Comparative 16S rRNA sequence analysis revealed that CDC group DF-3 is not a close relative of the capnocytophagas but constitutes a separate genus that clusters together with and , two generically misclassified species. The degree of protein similarity correlated with our and published DNA-DNA binding values. Percentage 16S rRNA similarity values of greater than 97% did not guarantee conspecificity. All strains had very similar fatty acid contents characterized by significant amounts of 14:0, 15:0 iso (greater than 55%), 16:0, 16:0 30H, and 17:0 iso 30H. PCR-mediated DNA fingerprinting allowed discrimination of most species, although some strains could not be classified efficiently because of DNA polymorphisms.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-3-782
1996-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/3/ijs-46-3-782.html?itemId=/content/journal/ijsem/10.1099/00207713-46-3-782&mimeType=html&fmt=ahah

References

  1. Akopyanz N., Bukanov N. O., Westblom T. U., Kresovich S., Be培 D. E. 1992; DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res 20:5137–5142
    [Google Scholar]
  2. Bernard K., Cooper C., Tessier S., Ewan E. P. 1991; Use of chemotaxonomy as an aid to differentiate among Capnocytophaga species, CDC group DF-3, and aerotolerant strains of Leptotrichia buccalis. J. Clin. Microbiol 29:2263–2265
    [Google Scholar]
  3. Bernardet J.-F., Segers P., Vancanneyt M., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int. J. Syst. Bacteriol 46:128–148
    [Google Scholar]
  4. Brenner D. J., Hollis D. G., Fanning G. R., Weaver R. E. 1989; Capnocytophaga canimorsus sp. nov. (formerly CDC group DF-2), a cause of septicemia following dog bit, and C. cynodegmi sp. nov., a cause of localized wound infection following dog bite. J. Clin. Microbiol 27:231–235
    [Google Scholar]
  5. Clayton R. A., Sutton G., Hinkle P. S., Bult C., Fields C. 1995; Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int. J. Syst. Bacteriol 45:595–599
    [Google Scholar]
  6. Collins M. D., Shah H. N., McKee A. S., Kroppenstedt R. M. 1982; Chemotaxonomy of the genus Capnocytophaga. J. Appl. Bacteriol 52:409–415
    [Google Scholar]
  7. Costas M. 1992; Classification, identification, and typing of bacteria by the analysis of their one-dimensional polyacrylamide gel electrophoretic protein patterns. Adv. Electrophor 5:351–408
    [Google Scholar]
  8. Daneshvar M. I., Hollis D. G., Moss C. W. 1991; Chemical characterization of clinical isolates which are similar to CDC group DF-3 bacteria. J. Clin. Microbiol 29:2351–2353
    [Google Scholar]
  9. Dees S. B., Karr D. E., Hollis D., Moss C. W. 1982; Cellular fatty acids of Capnocytophaga species. J. Clin. Microbiol 16:779–783
    [Google Scholar]
  10. Dees S. B., Powell J., Moss C. W., Hollis D. G., Weaver R. E. 1981; Cellular fatty acid composition of organisms frequently associated with human infections resulting from dog bites: Pasteurella multocida and groups EF-4, Ilj, M-5, and DF-2. J. Clin. Microbiol 14:612–616
    [Google Scholar]
  11. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:738–754
    [Google Scholar]
  12. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  13. Dewhirst F. E., Paster B. J., Li K.-H., Fraser G. J. 1991; New human Capnocytophaga species by PAGE and 16S rRNA sequencing. J. Dent. Res 70:319
    [Google Scholar]
  14. Eaton K. A., Dewhirst F. E., Radin M. J., Fox J. G., Paster B. J., Krakowka S., Morgan D. R. 1993; Helicobacter acinonyx sp. nov., isolated from cheetahs with gastritis. Int. J. Syst. Bacterio1 43:99–106
    [Google Scholar]
  15. Feinberg A., Vogelstein B. 1993; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem 132:6–13
    [Google Scholar]
  16. Fox G. E., Wisotzkey J. D., Jurtshuk P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol 42:166–170
    [Google Scholar]
  17. Fox J. G., Yan L. L., Dewhirst F. E., Paster B. J., Shames B., Murphy J. C., Hayward A., Belcher J. C., Mendes E. N. 1995; Helicobacter bills sp. novi, a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J. Clin. Microbiol 33:445–454
    [Google Scholar]
  18. Gherna R., Woese C. R. 1992; A partial phylogenetic analysis of the uflavobacter-bacteroides,? phylum: basis for taxonomic restructuring. Syst. Appl. Microbiol 15:513–521
    [Google Scholar]
  19. Giesendorf B. A. J., Quint W. G. V., Vandamme P., van Belkum A. Generation of DNA probes for detection of microorganisms by polymerase chain reaction. Zentrl. Bakteriol in press
    [Google Scholar]
  20. Giesendorf B. A. J., van Belkum A., Koeken A., Stegeman H., Henkens M. H. C., Van Der Plas J., Goossens H., Niesters H. G. M., Quint W. G. V. 1993; Development of species-specific DNA probes for Campylobacter jejuni, Campylobacter coli, and Campylobacter lari by polymerase chain reaction fingerprinting. J. Clin. Microbiol 31:1541–1546
    [Google Scholar]
  21. Holt S. C., Forcier G., Takacs B. J. 1979; Fatty acid composition of gliding bacteria: oral isolates of Capnocytophaga compared with Sporocytophaga. Infect. Immun 26:298–304
    [Google Scholar]
  22. Holt S. C., Leadbetter E. R., Sokransky S. S. 1979; Capnocytophaga: new genus of gram-negative gliding bacteria. IL Morphology and ultrastructure. Arch. Microbiol 122:17–27
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism 3 Academic Press, Inc.; New York:
    [Google Scholar]
  24. Khwaja K. J., Parish P., Aldred M. J., Wade W. G. 1990; Protein profiles of Capnocytophaga species. J. Appl. Bacteriol 68:385–390
    [Google Scholar]
  25. Kristiansen J. E., Bremmegaard A., Busk H. E., Heltberg O., Frederiksen W., Justersen T. 1984; Rapid identification of Capnocytophaga isolated from septicaemic patient. Eur. J. Clin. Microbiol 3:236–240
    [Google Scholar]
  26. Laughon B. E., Syed S. A., Loesche W. J. 1982; API ZYM system for the identification of Bacteroides spp., Capnocytophaga spp. and spirochaetes of oral origin. J. Clin. Microbiol 15:97–102
    [Google Scholar]
  27. Leadbetter E. R., Holt S. C., Sokransky S. S. 1979; Capnocytophaga: new genus of gram-negative gliding bacteria. I. General characteristics, taxonomic considerations and significance. Arch. Microbiol 122:9–16
    [Google Scholar]
  28. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  29. Newman M. G., Sutter V. L., Pickett M. J., Blachman U., Greenwood J. R., Grinenko V., Citron D. 1979; Detection, identification and comparison of Capnocytophaga, Bacteroides ochraceus, and DF-1. J. Clin. Microbiol 10:557–562
    [Google Scholar]
  30. Owen R. J., Jackman P. J. H. 1982; The similarities between Pseudomonas paucimobilis and allied bacteria derived from analysis of deoxyribonucleic acids and electrophoretic protein patterns. J. Gen. Microbiol 128:2945–2954
    [Google Scholar]
  31. Paster B. J., Dewhirst F. E. 1988; Phylogeny of Campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol 38:56–62
    [Google Scholar]
  32. Paster B. J., Dewhirst F. E., Olsen I., Fraser G. J. 1994; Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J. Bacteriol 176:725–732
    [Google Scholar]
  33. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol 8:151–156
    [Google Scholar]
  34. Pot B., Vandamme P., Kersters K. 1994 Analysis of electrophoretic whole-organism protein fingerprints. Goodfellow M., O’Donnell A. G.ed493–521 Modern microbial methods. Chemical methods in prokaryotic systematics J. Wiley and Sons, Ltd.; Chichester, United Kingdom:
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. EvoL 4:406–425
    [Google Scholar]
  36. Sasser M. 1995 Personal communication of cellular fatty acid composition provided from the anaerobic bacteria database. Microbial ID, Inc.; Newark, Del:
    [Google Scholar]
  37. Segers P., Mannheim W., Vancanneyt M., De Brandt K., Hinz K.-H., Kersters K., Vandamme P. 1993; Riemerella anatipestifer gen. nov., comb, nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int. J. Syst. Bacteriol 43:768–776
    [Google Scholar]
  38. Sokransl S. S., Holt S. C., Leadbetter E. R., Tanner A. C. R., Savitt E., Hammond B. F. 1979; Capnocytophaga: new genus of gram-negative gliding bacteria. III. Physiological characterisation. Arch. Microbiol 122:29–33
    [Google Scholar]
  39. Speck H., Kroppenstedt R. M., Mannheim W. 1987; Genomic relationships and species differentiation in the genus Capnocytophaga. Zentralbl. Bakteriol. Hyg. A 266:390–402
    [Google Scholar]
  40. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology* Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  41. Struelens M., Carlier E., Maes N., Serruys E., Quint W., Belkum A. van. 1993; Nosocomial colonisation and infection with multiresistant Acinetobacter baumanii: outbreak delineation using DNA macrorestriction analysis and PCR fingerprinting. J. Hosp. Infect 25:15–32
    [Google Scholar]
  42. van Belkum A. 1994; DNA fingerprinting of medically important microorganisms by use of PCR. Clin. Microbiol. Rev 7:174–184
    [Google Scholar]
  43. van Belkum A., Bax R., Peerbooms P., Goessens W. H. F., Van Leeuwen N., Quint W. G. V. 1993; Comparison of phage typing and DNA fingerprinting by polymerase chain reaction for discrimination of methicillin-resistant Staphylococcus aureus strains. J. Clin. Microbiol 31:798–803
    [Google Scholar]
  44. Vandamme P., Falsen E., Pot B., Hoste B., Kersters K., De Ley J. 1989; Identification of EF group 22 Campylobacters from gastroenteritis cases as Campylobacter concisus. J. Clin. Microbiol 27:1775–1781
    [Google Scholar]
  45. Vandamme P., Pot B., Falsen E., Kersters K., De Ley J. 1990; Intraand interspecific relationships of veterinary Campylobacters revealed by numerical analysis of electrophoretic protein profiles and DNA:DNA hybridizations. Syst. Appl. Microbiol 13:295–303
    [Google Scholar]
  46. Vandamme P., Segers P., Vancanneyt M., Van Hove K., Mutters R., Hommez J., Dewhirst F., Paster B., Kersters K., Falsen E., Devrieze L., Hinz K.-H., Mannheim W. 1994; Omithobacterium rhinotracheale gen. nov., sp. nov. isolated from the avian respiratory tract. Int. J. Syst. Bacteriol 44:24–37
    [Google Scholar]
  47. Vandamme P., Vancanneyt M., Pot B., Mels L., Hoste B., Dewettinck D., Vlaes L., Van Den Borre C., Higgins R., Hommez J., Kersters K., Butzler J.-P., Goossens H. 1992; Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int. J. Syst. Bacteriol 42:344–356
    [Google Scholar]
  48. Vauterin L., Yang P., Hoste B., Vancanneyt M., Civerolo E. L., Swings J., Kersters K. 1991; Differentiation of Xanthomonas campestris pv. citri strains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins, fatty acid analysis, and DNA-DNA hybridization. Int. J. Syst. Bacteriol 41:535–542
    [Google Scholar]
  49. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831
    [Google Scholar]
  50. Wallace P. L., Hollis D. G., Weaver R. E., Moss C. W. 1989; Characterization of CDC group DF-3 by cellular fatty acid analysis. J. Clin. Microbiol 27:735–737
    [Google Scholar]
  51. Williams B. L., Hammond B. F. 1979; Capnocytophaga: new genus of gram-negative gliding bacteria. IV. DNA base composition and sequence homology. Arch. Microbiol 122:29–33
    [Google Scholar]
  52. Williams B. L., Hollis D., Holdeman L. V. 1979; Synonymy of strains of Center for Disease Control group DF-1 with species of Capnocytophaga. J. Clin. Microbiol 10:550–556
    [Google Scholar]
  53. Wilson M. J., Wade W. G., Weightman A. J. 1995; Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA of human Capnocytophaga. J. Appl. Bacteriol 78:394–401
    [Google Scholar]
  54. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  55. Woese C. R., Yang D., Mandelco L., Stetter K. O. 1990; The flexibacterflavobacter connection. Syst. AppL Microbiol 13:161–165
    [Google Scholar]
  56. Yamamoto T., Kajiura S., Hirai Y., Watanabe T. 1994; Capnocytophaga haemolytica sp. nov. and Capnocytophaga granulosa sp. nov., from human dental pque. Int. J. Syst. Bacteriol 44:324–329
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-3-782
Loading
/content/journal/ijsem/10.1099/00207713-46-3-782
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error