1887

Abstract

rRNA sequencing has shown that Leuconostocs comprise three distinct phylogenetic lineages which have been designated separate genera (viz., the genera sensu stricto, , and ). In addition, the 16S rRNA line formed by (formerly ) is exceptionally long: This fact, together with variations in the compositions of conserved positions in the 16S rRNA, has led to the hypothesis (D. Yang and C. R. Woese, Syst. Appl. Microbiol. 12:145-149, 1989) that this organism is a fast-evolving bacterium. Previous evidence that the leuconostocs should be divided into three genera and that is an example of tachytelic evolution has come solely from rRNA analyses. In this study we sequenced the gene encoding the β’ subunit of DNA-dependent RNA polymerase of leuconostocs and performed a comparative phylogenetic analysis. The subdivision of the leuconostocs into three distinct lineages was confirmed by the gene data, but no evidence that indicated that is evolving at an extraordinary rate was found. If is truly tachytelic, then fast-evolving phenomena would be expected to occur throughout the whole genome, including this independent molecular chronometer.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1004
1996-10-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1004.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1004&mimeType=html&fmt=ahah

References

  1. Aboshkiwa M., Al-Ani B., Coleman G., Rowland G. 1992; Cloning and physical mapping of the Staphylococcus aureus rplL, rpoB and rpoC genes, encoding ribosomal protein L7/L12 and RNA polymerase subunits p and p. J. Gen. Microbiol 138:1875–1880
    [Google Scholar]
  2. Collins M. D., Samelis J., Metaxopoulos J., Wallbanks S. 1993; Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol 75:595–603
    [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  4. Dicks L. M. T. 1995; Relatedness of Leuconostoc species of the Leuconostoc sensu stricto line of descent, Leuconostoc oenos and Weissella paramesenteroides revealed by numerical analysis of total soluble cell protein patterns. Syst. Appl. Microbiol 18:99–102
    [Google Scholar]
  5. Dicks L. M. T., Dellaglio F., Collins M. D. 1995; Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int. J. Syst. Bacteriol 45:395–397
    [Google Scholar]
  6. Eisen J. A. 1995; The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J. Mol. Evol 41:1105–1123
    [Google Scholar]
  7. Felsenstein J. 1989; PHYLIP–phylogeny inference package, version 3.2. Cladistics 5:164–166
    [Google Scholar]
  8. Garvie E. I. 1986 Genus Leuconostoc. 1071–1075 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 Williams & Wilkins; Baltimore:
    [Google Scholar]
  9. Harland N. M., Leigh J. A., Collins M. D. 1993; Development of gene probes for the specific identification of Streptococcus uberis and Streptococcus parauberis based upon large subunit rRNA gene sequences. J. Appl. Bacteriol 74:526–531
    [Google Scholar]
  10. Honoré N., Bergh S., Chanteau S., Doucet-Populaire F., Eiglmeier K., Garnier T., Georges C., Launois P., Limpaiboon T., Newton S., Niang K., del Portillo P., Ramesh G. R., Reddi P., Ridel P. R., Sittisombut N., Wu-Hunter S., Cole S. T. 1993; Nucleotide sequence of the first cosmid from the Mycobacterium leprae genome project: structure and function of the Rif-Str regions. Mol. Microbiol 7:207–214
    [Google Scholar]
  11. Klenk H.-P., Zillig W. 1994; DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain. J. Mol. Evol 38:420–432
    [Google Scholar]
  12. Lecointre G., Philippe H., Van Le H. L., Le Guyader H. 1993; Species sampling has a major impact on phylogenetic inference. Mol. Phylog. Evol 2:205–224
    [Google Scholar]
  13. Ludwig W., Neumaier J., Klugbauer N., Brockmann E., Roller C., Jilg S., Reetz K., Schachtner I., Ludvigsen A., Bachleitner M., Fischer U., Schleifer K. H. 1994; Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor TU and ATP-synthase beta-subunit genes. Antonie van Leeuwenhoek 64:285–305
    [Google Scholar]
  14. Martinez-Murcia A J., Collins M. D. 1990; A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett 70:73–84
    [Google Scholar]
  15. Martinez-Murcia A J., Harland N. M., Collins M. D. 1993; Phylogenetic analysis of some leuconostocs and related organisms as determined from large-subunit rRNA gene sequences: assessment of congruence of smalland large-subunit rRNA derived trees. J. Appl. Bacteriol 74:532–541
    [Google Scholar]
  16. Morse R., Collins M. D., Balsdon J. T., Wallbanks S., Richardson P. T. Nucleotide sequence of part of the rpoC gene encoding the 0’ subunit of DNA-dependent RNA polymerase from some gram-positive bacteria and comparative amino acid sequence analysis. Syst. Appl. Microbiol in press
    [Google Scholar]
  17. Nolte O. 1995; Nucleotide sequence and genetic variability of a part of the rpoB gene encoding the second largest subunit of DNA-directed RNA polymerase of Neisseria meningitidis. Med. Microbiol. Lett 4:59–67
    [Google Scholar]
  18. Ovchinnikov Y. A., Monastryrskaya G. S., Gubanov V. V., Guryev S. O., Salomatina L. S., Shuvaeva T. M., Lipkin V. M., Sverdlov E. D. 1982; The primary structure of E. coli RNA polymerase. Nucleotide sequence of the rpoC gene and amino acid sequence of the p’-subunit. Nucleic Acids Res 10:4035–4044
    [Google Scholar]
  19. Palenik B., Haselkorn R. 1992; Multiple evolutionary origins of prochlorophytes, the chlorophyll ¿-containing prokaryotes. Nature (London) 355:265–267
    [Google Scholar]
  20. Priest F. G., Barbour E. A. 1985 Numerical taxonomy of lactic acid bacteria and some related taxa. 137–163 Goodfellow M., Jones D., Priest F. G.ed Computer-assisted bacterial systematics Academic Press; London:
    [Google Scholar]
  21. Tittawella I. P. B. 1984; Evidence for clustering of RNA polymerase and ribosomal protein genes in six species of enterobacteria. Mol. Gen. Genet 195:215–218
    [Google Scholar]
  22. Viale A. M., Arakaki A. K., Soncini F. C., Ferreyra R. G. 1994; Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int. J. Syst. Bacteriol 44:527–533
    [Google Scholar]
  23. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  24. Woese C. R., Stackebrandt E., Ludwig W. 1985; What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J. Mol. Evol 21:305–316
    [Google Scholar]
  25. Yang D., Woese C. R. 1989; Phylogenetic structure of the “leuconostocs”: an interesting case of a rapidly evolving organism. Syst. Appl. Microbiol 12:145–149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1004
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1004
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error