1887

Abstract

The glycolate-oxidizing, sulfate-reducing bacterium strain PerGlyS and the syntrophically glycolate-oxidizing bacterium strain FIGIyR were studied with respect to their phylogenetic relationships on the basis of in vitro amplification and direct sequencing of 16S rRNA-encoding DNA. Strain PerGlyS clustered with representatives of the δ subclass of the class , close to but sufficiently distinct to preclude its assignment to this genus. These organisms, together with , represent a phylogenetic subgroup among members of the δ subclass of . Strain FIGIyR was found to cluster with the gram-positive bacteria with low-G+C DNA, and and are its closest relatives. Other species of the genus are phyloge-netically only moderately closely related to these organisms. These results necessitate the establishment of new genera and species for these two strains. Strain PerGlyS was designated the type strain of gen. nov., sp. nov., and strain FIGIyR was designated the type strain of gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1065
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1065.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1065&mimeType=html&fmt=ahah

References

  1. Bateson M. M., Ward D. M. 1988; Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl. Environ. Microbiol 54:1738–1743
    [Google Scholar]
  2. Beck E. 1979 Glycolate synthesis. 327–335 Pirson A., Zimmerman M. H.ed Photosynthesis II. Encyclopedia of plant physiology, new series 6 Springer-Verlag KG; Berlin:
    [Google Scholar]
  3. Codd G. A., Smith B. M. 1974; Glycollate formation and excretion by the purple photosynthetic bacterium Rhodospirillum rubrum. FEBS Lett 48:105–108
    [Google Scholar]
  4. Cook G. M., Rainey F. A., Chen G., Stackebrandt E., Russell J. B. 1994; Emendation of the description of Acidaminococcus fermentans, a trans-aconitateand citrate-oxidizing bacterium. Int. J. Syst. Bacteriol 44:576–578
    [Google Scholar]
  5. Del Dot T., Osawa R., Stackebrandt E. 1993; Phascolarctobacterium faecium, gen. nov., spec, nov., a novel taxon of the Sporomusa group of bacteria. Syst. Appl. Microbiol 16:380–384
    [Google Scholar]
  6. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. J. Bacteriol 171:6689–6695
    [Google Scholar]
  7. Farrow J. A. E., Ash C., Wallbanks S., Collins M. D. 1991; Phylogenetic analysis of the genera Marinococcus, Pianococcus and Sporosarcina and their relationships to members of the genus Bacillus. Phylogenetic analysis of Desulfotomaculum nigrificans. FEMS Microbiol. Lett 93:167–172
    [Google Scholar]
  8. Felsenstein J. 1982; Numerical methods for inferring phylogenetic trees. Q. Rev. Biol 57:379–404
    [Google Scholar]
  9. Friedrich M., Laderer U., Schink B. 1991; Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch. Microbiol 156:398–404
    [Google Scholar]
  10. Friedrich M., Schink B. 1993; Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. Eur. J. Biochem 217:233–240
    [Google Scholar]
  11. Friedrich M., Schink B. 1995; Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium. Arch. Microbiol 163:268–275
    [Google Scholar]
  12. Friedrich M., Schink B. 1995; Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. Arch. Microbiol 164:271–279
    [Google Scholar]
  13. Harmsen H. J. M., Wullings B., Akkermans A. D. L., Ludwig W., Stams A. J. M. 1993; Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch. Microbiol 160:238–240
    [Google Scholar]
  14. Isaksen M. F., Jbrgensen B. B. 1996; Adaption of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl. Environ. Microbiol 62:408–414
    [Google Scholar]
  15. Karrer W. 1958 Konstitution und Vorkommen von organischen Pflanzenstoffen Birkhauser; Basel:
    [Google Scholar]
  16. Ludwig W., Schleifer K. H. 1994; Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol. Rev 15:155–173
    [Google Scholar]
  17. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G., Fogel K., Blandy J., Woese C. R. 1994; The ribosomal database project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  18. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol 176:1–6
    [Google Scholar]
  19. Patel B. K., Love C. A., Stackebrandt E. 1992; Helix 6 of the 16S rRNA of the bacterium Desulfotomaculum australicum exhibits an unusual structural idiosyncrasy. Nucleic Acids Res 20:5483
    [Google Scholar]
  20. Redburn A. C., Patel B. K. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett 113:81–86
    [Google Scholar]
  21. Schink B., Pfennig N. 1982; Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic non-sporeforming bacterium. Arch. Microbiol 133:195–201
    [Google Scholar]
  22. Schleifer K. H., Leuteritz M., Weiss N., Ludwig W., Kirchhof G., Seidel-Rufer H. 1990; Taxonomic study of anaerobic, gram-negative, rodshaped bacteria from breweries: emended description of Pectinatus cerevisiiphilus and description of Pectinatus frisingensis sp. nov., Selenomonas lacticifex sp. nov., Zymophilus raffinosivorans gen. nov., sp. nov., and Zymophilus paucivorans sp. nov. Int. J. Syst. Bacteriol 40:19–27
    [Google Scholar]
  23. Shorey E. C. 1899; GlycoIlic acid: one of the acids of sugar-cane. J. Am. Chern. Soc 21:45–50
    [Google Scholar]
  24. Springer N., Ludwig W., Amann R., Schmidt H. J., Gortz H. D., Schleifer K. H. 1993; Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc. Natl. Acad. Sci. USA 90:9892–9895
    [Google Scholar]
  25. Strunk O., Gross O., Reichel B., May M., Hermann S., Stuckmann N., Nonhoff B., Lenke M., Ginhart A., Vilbig A., Ludwig T., Bode A., Schleifer K. H., Ludwig W. ARB: a software environment for sequence data. Nucleic Acids Res in press
    [Google Scholar]
  26. Utkin I., Woese C. R., Wiegel J. 1994; Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. Bacteriol 44:612–619
    [Google Scholar]
  27. Van de Peer Y., Van den Broeck I., De Rijk P., De Wachter R. 1994; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494
    [Google Scholar]
  28. Wallrabenstein C., Gomy N., Springer N., Ludwig W., Schink B. 1995; Pure culture of Syntrophus buswellii, definition of its phylogenetic status, and description of Syntrophus gentianae sp. nov. Syst. Appl. Microbiol 18:62–66
    [Google Scholar]
  29. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 3. Characterisation of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol 134:286–294
    [Google Scholar]
  30. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol 129:395–400
    [Google Scholar]
  31. Willems A. M. C. G., Willems A., Collins M. D. 1995; Phylogenetic placement of Dialister pneumosintes (formerly Bacteroides pneumosintes) within the Sporomusa subbranch of the Clostridium subphylum of the grampositive bacteria. Int. J. Syst. Bacteriol 45:403–405
    [Google Scholar]
  32. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  33. Woese C. R., Debrunner-Vossbrinck B. A., Oyaizu H., Stackebrandt E., Ludwig W. 1985; Grampositive bacteria: possible photosynthetic ancestry. Science 229:762–765
    [Google Scholar]
  34. Zhao H., Yang D., Woese C. R., Bryant M. P. 1990; Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int. J. Syst. Bacteriol 40:40–44
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1065
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1065
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error