1887

Abstract

A novel aerobic hyperthermophilic archaeon was isolated from a coastal solfataric vent at Kodakara-Jima Island, Japan. The new isolate, strain K1, is the first strictly aerobic organism growing at temperatures up to 100°C. It grows optimally at 90 to 95°C, pH 7.0, and a salinity of 3.5%. The cells are spherical shaped and 0.8 to 1.2 μm in diameter. Various proteinaceous complex compounds served as substrates during aerobic growth. Thiosulfate stimulates growth without producing HS. The core lipids consist solely of C-isopranyl archaeol(glycerol diether). The G+C content of the genomic DNA is 67 mol%. Phylogenetic analysis based on 16S rRNA sequence indicates that strain K1 is a new member of Crenarchaeota. On the basis of our results, the name gen. nov., sp. nov. is proposed (type strain: K1; JCM 9820).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1070
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1070.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1070&mimeType=html&fmt=ahah

References

  1. Achenbach-Richter L., Gupta R., Stetter K. O., Woese C. R. 1987; Were the original eubacteria thermophiles? Syst. Appl. Microbiol 9:34–39
    [Google Scholar]
  2. Achenbach-Richter L., Gupta R., Zillig W., Woese C. R. 1988; Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. Syst. Appl. Microbiol 10:231–240
    [Google Scholar]
  3. Achenbach-Richter L., Stetter K. O., Woese C. R. 1987; A possible biochemical missing link among archaebacteria. Nature (London) 327:348–349
    [Google Scholar]
  4. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol 32:781–791
    [Google Scholar]
  5. Baross J. A. 1995 Isolation, growth, and maintenance of hyperthermophiles. 15–23 Robb F. T., Place A. R.ed Archaea, a laboratory manual, thermophiles Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  6. Bartlett G. R. 1959; Phosphorus assay in column chromatography. J. Biol. Chern 234:466–468
    [Google Scholar]
  7. Baumeister W., Lembcke G. 1992; Structural features of archaebacterial cell envelopes. J. Bioenerg. Biomembr 24:567–575
    [Google Scholar]
  8. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol 37:911–917
    [Google Scholar]
  9. Cavalier-Smith T. 1992; Bacteria and eukaryotes. Nature (London) 356:570
    [Google Scholar]
  10. DeLong E. F. 1992; Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689
    [Google Scholar]
  11. De Rosa M., Gambacorta A. 1988; The lipids of archaebacteria. Prog. Lipid Res 27:153–157
    [Google Scholar]
  12. De Rosa M., Gambacorta A., Nicolaus B., Grant W. D. 1983; A C25, C25 diether core lipid from archaebacterial haloalkaliphiles. J. Gen. Microbiol 129:2333–2337
    [Google Scholar]
  13. De Rosa M., Gambacorta A., Trincone A., Basso A., Zillig W., Holz I. 1987; Lipids of Thermococcus celer, a sulfur-reducing archaebacterium: structure and biosynthesis. Syst. Appl. Microbiol 9:1–5
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791
    [Google Scholar]
  15. Hilpert R., Winter J., Hammes W., Kandler O. 1981; The sensitivity of archaebacteria to antibiotics. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:11–20
    [Google Scholar]
  16. Hoaki T., Nishijima M., Kato M., Adachi K., Mizobuchi S., Hanzawa N., Maruyama T. 1994; Growth requirements of hyperthermophilic sulfurdependent heterotrophicarchaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Appl. Environ. Microbiol 60:2898–2904
    [Google Scholar]
  17. Hoaki T., Nishijima M., Miyashita H., Maruyama T. 1995; Dense community of hyperthermophilic sulfur-dependent heterotrophs in a geothermally heated shallow submarine biotope near Kodakara-Jima Island, Kagoshima, Japan. Appl. Environ. Microbiol 61:1931–1937
    [Google Scholar]
  18. Huber G., Spinnler C., Gambacorta A., Stetter K. O. 1989; Metallospaera sedula gen. and sp. nov. represents a new genus of aerobic, metalmobilizing, thermoacidophilic archaebacteria. Syst. Appl. Microbiol 12:3847
    [Google Scholar]
  19. Huber R., Langworthy T. A., Konig H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol 144:324–333
    [Google Scholar]
  20. Huber R., Staffers P., Cheminee J. L., Richnow H. H., Stetter K. O. 1990; Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature (London) 345:179–182
    [Google Scholar]
  21. Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., Konig H., Rachel R., Rockinger I., Fricke H., Stetter K. O. 1992; Aquifex pyrophilus gen. nov. represents a novel group of marine hyperthermophilic hydrogenoxidizing bacteria. Syst. Appl. Microbiol 15:340–351
    [Google Scholar]
  22. Kasting J. F. 1987; Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res 34:205–229
    [Google Scholar]
  23. Koga Y., Nishihara M., Morii H., Akagawa-Matsushita M. 1993; Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol. Rev 57:164–182
    [Google Scholar]
  24. Konig H., Stetter K. O. Archaeobacteria. 2171–2173 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  25. Langworthy T. A., Smith P. F. 1989 Cell wall-less archaebacteria. 2233–2236 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  28. Morikawa M., Izawa Y., Rashid N., Hoaki T., Imanaka T. 1994; Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl. Environ. Microbiol 60:4559–4566
    [Google Scholar]
  29. Murray M. G., Thompson W. F. 1980; Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325
    [Google Scholar]
  30. Nishihara M., Morii H., Koga Y. 1987; Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum. J. Biochem 101:1007–1015
    [Google Scholar]
  31. Nishihara M., Morii H., Koga Y. 1989; Heptads of polar ether lipids of an archaebacterium, Methanobacterium thermoautotrophicum. structure and biosynthetic relationship. Biochemistry 28:95–102
    [Google Scholar]
  32. Nishihara M., Koga Y. 1988; Quantitative conversion of diether or tetraether phospholipids to glycerophosphoesters by dealkylation with boron trichloride: a tool for structural analysis of archaebacterial lipids. J. Lipid Res 29:384–388
    [Google Scholar]
  33. Nishihara M., Koga Y. 1991; Hydroxyarchaetidylserine and hydroxyarchaetidyl-myo-inositol in Methanosarcina barkerr. polar lipids with a new ether core portion. Biochim. Biophys. Acta 1082:211–217
    [Google Scholar]
  34. Nomura N., Sako Y. Unpublished data
  35. Ohmoto H., Kanegawa T., Lowe D. R. 1993; 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Science 262:555–557
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  37. Sako Y., Kogishi T., Nomura N., Ishida Y. Unpublished data
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd.9.14–9.23 Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  39. Sanger F., Coulson A. R., Hong G. F., Hill O. F., Petersen G. B. 1982; Nucleotide sequence of bacteriophage X DNA. J. Mol. Biol 162:729–773
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sei. USA 74:5463–5467
    [Google Scholar]
  41. Segerer A, Stetter K. O. 1989 Genus I. Sulfolobus Brock, Brock, Belly and Weiss 1972,66AL. 2250–2251 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  42. Segerer A., Stetter K. O. 1989 Genus II. Acidianus Segerer, Neuner, Kristjansson and Stetter 1986, 562vp. 2251–2253 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  43. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol. Rev 75:117–124
    [Google Scholar]
  44. Stetter K. O., König H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol 4:535–551
    [Google Scholar]
  45. Tajima F., Nei M. 1984; Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol 1:269–285
    [Google Scholar]
  46. Towe K. M. 1990; Aerobic respiration in the Archaean?. Nature (London) 348:54–56
    [Google Scholar]
  47. Traub S., Mizushima S., Lowry C. V., Nomura M. 1971; Reconstitution of ribosomes from subribosomal components. Methods Enzymol 20:391–407
    [Google Scholar]
  48. Tuttle J. H. 1980; Thiosulfate oxidation and tetrathionate reduction by intact cells of marine pseudomonad 16B. Appl. Environ. Microbiol 39:1159–1166
    [Google Scholar]
  49. Tuttle J. H., Jannasch H. W. 1972; Occurrence and types of Thiobacillus-like bacteria in the sea. Limnol. Oceanogr 17:532–543
    [Google Scholar]
  50. Tuttle J. H., Jannasch H. W. 1973; Sulfide and thiosulfate-oxidizing bacteria in anoxic marine basins. Mar. Biol 20:64–70
    [Google Scholar]
  51. Tuttle J. H., Jannasch H. W. 1977; Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters. Microb. Ecol 4:9–25
    [Google Scholar]
  52. Veinstein M. B. 1976; On taxonomy of Thiobacillus trautweinii. Microbiologiya 45:137–141
    [Google Scholar]
  53. Volkel P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl. Environ. Microbiol 59:2918–2926
    [Google Scholar]
  54. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria, and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol 14:305–310
    [Google Scholar]
  55. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  56. Woese C. R., Achenbach L., Rouviere P., Mandelco L. 1991; Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol 14:364–371
    [Google Scholar]
  57. Woese C. R., Fox G. E. 1977; Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:5088–5090
    [Google Scholar]
  58. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579
    [Google Scholar]
  59. Zillig W., Holz I., Janekovic D., Klenk H.-P., Imsel E., Trent J., Wunderl S., Foijaz V. H., Coutinho R., Ferreira T. 1990; Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol 172:3959–3965
    [Google Scholar]
  60. Zillig W., Stetter K. O., Prangishvilli D., Schafer W., Wunderl S., Janekovic D., Holz I., Palm P. 1982; Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 3:304–317
    [Google Scholar]
  61. Zillig W., Stetter K. O., Wunderl S., Schulz W., Priess H., Scholz I. 1980; The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch. Microbiol 125:259–269
    [Google Scholar]
  62. Zillig W., Yeats S., Holz I., Bock A., Rettenberger M., Gropp F., Simon G. 1986; Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst. Appl. Microbiol 8:197–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1070
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1070
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error