1887

Abstract

Whipple’s disease is a rare chronic illness associated with an unculturable bacterium that is constantly present in affected tissues. This bacterium was previously characterized at the molecular level by PCR and sequencing of the 16S rRNA gene. On the basis of 1,321 nucleotides of the sequence of its gene coding for 16S rRNA (16S rDNA), a phylogenetic relationship to the actinomycetes was established. In this study, we determined an almost complete 16S rDNA sequence (1,495 nucleotides), the 16S-23S ribosomal intergenic spacer sequence, and 200 nucleotides of the 23S rRNA gene. The 16S rDNA sequence was compared with the large number of actinomycete sequences that have been added to the database since the original study. Phylogenetic analysis revealed a branching position as the deepest branch of the cluster comprising the actinomycetes with group B peptidoglycan between this group and the family . This provides additional information on the phylogenetic position of this bacterium and some clues as to its characteristics. The spacer region between the 16S and 23S rRNA genes is 294 nucleotides long and does not contain tRNA genes. As has been shown in other instances, the increased variability of the ribosomal intergenic spacer compared with the 108 rRNA gene makes it a potential target for use in the differentiation of strains of the bacterium associated with Whipple’s disease.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1078
1996-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1078.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1078&mimeType=html&fmt=ahah

References

  1. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol 45:240–245
    [Google Scholar]
  2. Collins M. D., Bradbury J. F. 1992 The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium, and Micro bacterium. 1355–1368 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  3. Dobbins W. O. III 1987 Whipple’s disease Charles C Thomas; Publisher, Springfield, Ill:
    [Google Scholar]
  4. Dobbins W. O. III, Kawanishi H. 1981; Bacillary characteristics in Whipple’s disease: an electron microscopic study. Gastroenterology 80:1468–1475
    [Google Scholar]
  5. East A. K., Collins M. D. 1993; Molecular characterization of DNA encoding 23S rRNA and 16S-23S rRNA intergenic spacer regions of Aeromonas hydrophila. FEMS Microbiol. Lett 106:129–134
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  7. Felsenstein J. 1993 PHYLIP (phylogenetic inference package) version 3.5.1 Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  8. Funke G., Falsen E., Barreau C. 1995; Primary identification of Microbacterium spp. encountered in clinical specimens as CDC coryneform group A-4 and A-5 bacteria. J. Clin. Microbiol 33:188–192
    [Google Scholar]
  9. Funke G., Ramos C. P., Collins M. D. 1995; Identification of some clinical strains of CDC coryneform group A-3 and A-4 bacteria as Cellulomonas species and proposal of Cellulomonas hominis sp. nov. for some group A-3 strains. J. Clin. Microbiol 33:2091–2097
    [Google Scholar]
  10. Gürtler V., Barrie H. D. 1995; Typing of Staphylococcus aureus by PCR-amplification of variable length 16S-23S rDNA spacer regions: characterization of spacer sequences. Microbiology 141:1255–1265
    [Google Scholar]
  11. Gütler V., Stanisich V. A. 1996; New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16
    [Google Scholar]
  12. Ji Y., Colston M. J., Cox R. A. 1994; The ribosomal RNA (rm) opérons of fast-growing mycobacteria: primary and secondary structures and their relation to rm opérons of pathogenic slow-growers. Microbiology 140:2829–2840
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  14. Kempsell K. E., Ji Y.-E., Estrada-G I. C. E., Colston M. J., Cox R. A. 1992; The nucleotide sequence of the promoter, 16S rRNA and spacer region of the ribosomal RNA operon of Mycobacterium tuberculosis and comparison with Mycobacterium leprae precursor rRNA. J. Gen. Microbiol 138:1717–1727
    [Google Scholar]
  15. Kim E., Kim H., Hong S. P., Kang K. H., Kho Y. H., Park Y. H. 1993; Gene organization and primary structure of a ribosomal RNA gene cluster from Streptomyces griseus subsp. griseus. Gene 132:21–31
    [Google Scholar]
  16. Kim S.-B., Yoon J.-H., Kim H., Lee S. T., Park Y.-H., Goodfellow M. 1995; A phylogenetic analysis of the genus Saccharomonospora conducted with 16S rRNA gene sequences. Int. J. Syst. Bacteriol 45:351–356
    [Google Scholar]
  17. Koch C., Kroppenstedt R. M., Stackebrandt E. 1996; Intrageneric relationships of the actinomycète genus Micromonospora. Int. J. Syst. Bacteriol 46:383–387
    [Google Scholar]
  18. Koch C., Rainey F. A., Stackebrandt E. 1994; 16S rDNA studies on members of Arthrobacter and Micrococcus: an aid to their future taxonomic restructuring. FEMS Microbiol. Lett 123:167–172
    [Google Scholar]
  19. Korn-Wendisch F., Rainey F. A., Kroppenstedt R. M., Majazza A., Stackebrandt E. 1995; Thermocrispum gen. nov., a new genus of the order Actinomycetales, and description of Thermocrispum municipale sp. nov. and Thermocrispum agreste sp. nov. Int. J. Syst. Bacteriol 45:67–77
    [Google Scholar]
  20. Kostman J. R., Edlind T. D., LiPuma J. J., Stull T. L. 1992; Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J. Clin. Microbiol 30:2048–2087
    [Google Scholar]
  21. Leblond-Bourget N., Philippe H., Mangin I., Decaris B. 1996; 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal interand intraspecific Bifidobacterium phylogeny. Int. J. Syst. Bacteriol 46:102–111
    [Google Scholar]
  22. Li X., De Boer S. H. 1995; Selection of polymerase chain reaction primers from an RNA intergenic spacer region for the specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85:837–842
    [Google Scholar]
  23. Liesack W., Sela S., Bercovier H., Pitulle C., Stackebrandt E. 1991; Complete nucleotide sequence of the Mycobacterium leprae 23S and 5S rRNA genes plus flanking regions and their potential in designing diagnostic oligonucleotide probes. FEBS Lett 281:114–118
    [Google Scholar]
  24. Loughney K., Lund E., Dahlberg J. E. 1982; tRNA genes are found between the 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res 10:1607–1624
    [Google Scholar]
  25. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  26. Maiwald M., Meier-Willersen H. J., Hartmann M., von Herbay A. 1995; Detection of Tropheryma whippelii DNA in a patient with AIDS. J. Clin. Microbiol 33:1354–1356
    [Google Scholar]
  27. Meier-Willersen H. J., Maiwald M., Herbay A. von. 1993; Morbus Whipple in Assoziation mit opportunistischen Infektionen. Dtsch. Med. Wochenschr 118:854–860
    [Google Scholar]
  28. Normand P., Cournoyer B., Simonet P., Nazaret S. 1992; Analysis of a ribosomal RNA operon in the actinomycète Frankia. Gene 111:119–124
    [Google Scholar]
  29. Pascual C., Lawson P. A., Farrow J. A. E., Gimenez M. N., Collins M. D. 1995; Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol 45:724–728
    [Google Scholar]
  30. Rainey F. A., Burghardt J., Kroppenstedt R. M., Klatte S., Stackebrandt E. 1995; Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141:523–528
    [Google Scholar]
  31. Rainey F. A., Schumann P., Prauser H., Toalster R., Stackebrandt E. 1993; Sporichthya polymorpha represents a novel line of descent within the order Actinomycetales. FEMS Microbiol. Lett 109:263–268
    [Google Scholar]
  32. Rainey F. A, Stackebrandt E. 1993; Phylogenetic evidence for the classification of Acidothermus cellulolyticus into the subphylum of the actinomycetes. FEMS Microbiol. Lett 108:27–30
    [Google Scholar]
  33. Rainey F. A., Weiss N., Prauser H., Stackebrandt E. 1994; Further evidence for the phylogenetic coherence of actinomycetes with Group B- peptidoglycan and evidence for the phylogenetic intermixing of the genera Microbacterium and Aureobacterium as determined by 16S rDNA analysis. FEMS Microbiol. Lett 118:135–140
    [Google Scholar]
  34. Rainey F. A., Weiss N., Stackebrandt E. 1994; Coriobacterium and Atopobium are phylogenetic neighbors within the actinomycetes line of descent as derived by 16S rDNA analysis. Syst. AppL Microbiol 17:202–205
    [Google Scholar]
  35. Rainey F. A., Weiss N., Stackebrandt E. 1995; Phylogenetic analysis of the genera Cellulomonas, Promicromonospora, and Jonesia and proposal to exclude the genus Jonesia from the family Cellulomonadaceae. Int. J. Syst. Bacteriol 45:649–652
    [Google Scholar]
  36. Reiman D. A., Schmidt T. M., MacDermott R. P., Falkow S. 1992; Identification of the uncultured bacillus of Whipple’s disease. N. Engl. J. Med 327:293–301
    [Google Scholar]
  37. Ruimy R., Riegel P., Boiron P., Monteil H., Christen R. 1995; Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences. Int. J. Syst. Bacteriol 45:740–746
    [Google Scholar]
  38. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  39. Srivastava A. K., Schlessinger D. 1990; Mechanism and regulation of bacterial ribosomal RNA processing. Annu. Rev. Microbiol 44:105–129
    [Google Scholar]
  40. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. 1995; Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol 45:682–692
    [Google Scholar]
  41. Stackebrandt E., Prauser H. 1992 The family Cellulomonadaceae. 1323–1345 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  42. Strunk O., Ludwig W. 1995 Unpublished data
  43. Takeuchi M., Yokota A. 1994; Phylogenetic analysis of the genus Microbacterium based on 16S rRNA gene sequences. FEMS Microbiol. Lett 124:11–16
    [Google Scholar]
  44. Thompson D. E., Balsdon J. T., Cai J., Collins M. D. 1992; Studies on the ribosomal RNA operons of Listeria monocytogenes. FEMS Microbiol. Lett 96:219–224
    [Google Scholar]
  45. von Herbay A., Ditton H. J., Maiwald M. 1996; Diagnostic application of a polymerase chain reaction assay for the Whipple’s disease bacterium to intestinal biopsies. Gastroenterology 110:1735–1743
    [Google Scholar]
  46. Ward-Rainey N., Rainey F. A., Stackebrandt E. 1996; The phylogenetic structure of the genus Streptosporangium. Syst. AppL Microbiol 19:50–55
    [Google Scholar]
  47. Warwick S., Bowen T., McVeigh H., Embley M. 1994; A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int. J. Syst. Bacteriol 44:293–299
    [Google Scholar]
  48. Wilson K. H., Blitchington R., Frothingham R., Wilson J. A P. 1991; Phylogeny of the Whipple’s disease-associated bacterium. Lancet 338:474–475
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1078
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1078
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error