1887

Abstract

An extremely thermophilic archaeon, strain ST557 (T = type strain), was isolated from a deep-sea hydrothermal vent in the North Fiji Basin. This strain is a strictly anaerobic coccus whose cells are about 0.8 to 2 μm in diameter. The optimum temperature, pH and sea salt concentration for growth are 85°C, 8.5, and 20 to 40 g/liter, respectively. Strain ST557 grows preferentially in the presence of elemental sulfur on proteinaceous substrates and on a mixture of 20 amino acids. It grows slowly on pyruvate and maltose. Growth is inhibited by rifampin. The DNA G+C content is 54 to 55 mol%. Sequencing of the 16S rRNA gene revealed that strain ST557 belongs to the genus . We propose that this organism should be placed in a new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1113
1996-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1113.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1113&mimeType=html&fmt=ahah

References

  1. Antoine E., Barbier G., Caprais J. C., Erauso G., Godfrey A., Guezennec J., Prieur D., Raguenes G. 1991; Isolation and identification of anaerobic sulfur dependent thermophilic bacteria from two new hydrothermal sites in SW Pacific (Lau Basin and North Fiji Basin). Kiel. Meeresforsch 8:178–181
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev 43:260–296
    [Google Scholar]
  3. Belkin S., Jannasch H. W. 1985; A new extremely thermophilic, sulfurreducing heterotrophic marine bacteria. Arch. Microbiol 141:181–186
    [Google Scholar]
  4. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol 37:911–917
    [Google Scholar]
  5. Blöchl E., Burggraf S., Fiala G., Lauerer G., Huber G., Huber R., Rachel R., Segerer A., Stetter K. O., Völkl P. 1995; Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J. Microbiol. Biotechnol 11:9–16
    [Google Scholar]
  6. Blumentals I. I., Itoh M., Olson G. J., Kelly R. M. 1990; Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl. Environ. Microbiol 56:1255–1262
    [Google Scholar]
  7. Burggraf S., Jannasch H. W., Nicolaus B., Stetter K. O. 1990; Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst. Appl. Microbiol 13:24–28
    [Google Scholar]
  8. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr 14:454–458
    [Google Scholar]
  9. Dauga C., Grimont P. A. D. 1991; Nucleotide sequence of 16S rRNA from ten Serratia species. Res. Microbiol 141:1139–1149
    [Google Scholar]
  10. Desbruyères D., Alayse-Danet A. M., Otha S.Scientific Parties of Biolau and Starmer Cruises 1994; Deep-sea hydrothermal communities in southwestern Pacific back-arc basins (the North-Fiji and Lau basins): composition, microdistribution and food web. Mar. Geol 116:227–242
    [Google Scholar]
  11. Erauso G., Godfrey A., Raguenes G., Prieur D. Plate cultivation techniques for strictly anaerobic; thermophilic, sulfur-metabolizing Archae. Protocols for archaebacterial research:
  12. Erauso G., Reysenbach A. L., Godfrey A., Meunier J. R., Crump B., Partensky F., Baross J. A., Marteinsson V., Barbier G., Pace N. R., Prieur D. 1993; Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol 160:338–349
    [Google Scholar]
  13. Fiala G., Stetter K. O. 1986; Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol 145:56–61
    [Google Scholar]
  14. Fiala G., Stetter K. O., Jannasch H. W., Langworthy T. A., Madon J. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst. Appl. Microbiol 8:106–113
    [Google Scholar]
  15. Godfroy A. Unpublished data
  16. Gonzalez J. M., Kato C., Horikoshi K. 1995; Thermococcuspeptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch. Microbiol 164:159–164
    [Google Scholar]
  17. Grimaud D., Ishibashi J. I., Lagabrielle Y., Auzende J. M., Urabe T. 1991; Chemistry of hydrothermal fluids from the 17°S active site in the North Fiji Basin ridge (SW Pacific). Chern. Geol 93:209–218
    [Google Scholar]
  18. Hoaki T., Nishijima M., Kato M., Adachi K., Mizobuchi S., Hanzawa N., Maruyama T. 1994; Growth requirements of hyperthermophilic sulfurdependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Appl. Environ. Microbiol 60:2898–2904
    [Google Scholar]
  19. Hoaki T., Wirsen C. O., Hanzawa S., Maruyama T., Jannasch H. W. 1993; Amino acid requirements of two hyperthermophilic archaeal isolates from deep-sea vents, Desulfurococcus sp. strain SY and Pyrococcus sp. strain GB-D. Appl. Environ. Microbiol 59:610–613
    [Google Scholar]
  20. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol 33:1225–1228
    [Google Scholar]
  21. Huber R., Stöhr J., Honenhaus S., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1995; Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal environment. Arch. Microbiol 164:255–264
    [Google Scholar]
  22. Jannasch H. W., Wirsen C. O., Moiyneaux S. J., Langworthy T. A. 1988; Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Appl. Environ. Microbiol 54:1203–1209
    [Google Scholar]
  23. Jannasch H. W., Wirsen C. O., Moiyneaux S. J., Langworthy T. A. 1992; Comparative physiological studies on hyperthermophilic archaea isolated from deep-sea hot vents with emphasis on Pyrococcus sp. strain GB-D. Appl. Environ. Microbiol 58:3472–3481
    [Google Scholar]
  24. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983; Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol 136:254–261
    [Google Scholar]
  25. Jones W. J., Stugard C. E., Jannasch H. W. 1989; Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch. Microbiol 151:314–318
    [Google Scholar]
  26. Kates M. 1964; Bacterial lipids. Adv. Lipid Res 2:17–90
    [Google Scholar]
  27. Keller M., Braun F.-J., Dirmeieir R., Hafenbradl D., Burggraf S., Rachel R., Stetter K. O. 1995; Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch. Microbiol 164:390–395
    [Google Scholar]
  28. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K. 1994; Thermococcus profundus sp. nov. a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst. Appl. Microbiol 17:232–236
    [Google Scholar]
  29. Kurr M., Huber R., König H., Jannasch H. W., Fricke H., Trincone A., Kristjansson J. K., Stetter K. O. 1991; Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol 156:239–247
    [Google Scholar]
  30. Langworthy T. A., Holzer G., Zeikus J. G., Tornabene T. G. 1983; Isoand anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune. Syst. Appl. Microbiol 4:1–17
    [Google Scholar]
  31. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  32. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernych N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst. Appl. Microbiol 12:257–262
    [Google Scholar]
  33. Moensch T. T., Zeikus J. G. 1983; An improved preparation method for a titanium(HI) media reductant. J. Microbiol. Methods 1:199–202
    [Google Scholar]
  34. Neuner A., Jannasch H. W., Belkin S., Stetter K. O. 1990; Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacterium. Arch. Microbiol 153:205–207
    [Google Scholar]
  35. Pauly G. G., Van Vleet E. S. 1986; Acyclic archaebacterial ether lipids in swamp sediments. Geochim. Cosmochim. Acta 50:1117–1125
    [Google Scholar]
  36. Pledger R. J., Baross J. A. 1989; Characterization of an extremely thermophilic archaebacterium isolated from a black smoker polychaete (Paralvinella sp.) at the Juan de Fuca Ridge. Syst. Appl. Microbiol 12:249–256
    [Google Scholar]
  37. Pledger R. J., Baross J. A. 1991; Preliminary description and nutritional characterization of a chemoorganotrophic archaeobacterium growing at temperatures up to 110°C isolated from a submarine hydrothermal vent environment. J. Gen. Microbiol 137:203–211
    [Google Scholar]
  38. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., Rachel R., Stetter K. O. 1991; Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. Syst. Appl. Microbiol 14:245–253
    [Google Scholar]
  39. Popoff M. Y., Coynault C. 1980; Use of DEAE cellulose filters in the SI nuclease method for bacterial deoxyribonucleic acid hybridization. Ann. Inst. Pasteur/Microbiol Paris 131A:151–155
    [Google Scholar]
  40. Prieur D., Erauso G., Jeanthon C. 1995; Hyperthermophilic life at deep-sea hydrothermal vents. Planet. Space Sci 43:115–121
    [Google Scholar]
  41. Rimbault A., Guezennec J., Fromage M., Niel P., Godfroy A., Rocchiccioli F. 1993; Organic acids and stable isotypes: metabolic studies of a thermophilic sulfur-dependent anaerobic archaeon. J. Microbiol. Methods 18:329–338
    [Google Scholar]
  42. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  43. Saitou M., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 44:406–425
    [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5473–5467
    [Google Scholar]
  45. Watrin L., Martin-Jezequel V., Prieur D. 1995; Minimal amino acid requirements of the hyperthermophilic archaeon Pyrococcus abyssi isolated from deep-sea hydrothermal vents. Appl. Environ. Microbiol 61:1138–1140
    [Google Scholar]
  46. White D. C., Nickels J. D., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia (Berlin) 40:51–62
    [Google Scholar]
  47. Zillig W., Holtz I., Janekovic D., Schäfer W., Reiter W. D. 1983; The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol 4:88–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1113
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error