1887

Abstract

An acetone-degrading, nitrate-reducing, coccoid to rod-shaped bacterium, strain L1, was isolated from soil on the site of a natural gas company. Cells of the logarithmic growth phase reacted gram positive, while those of the stationary growth phase were gram negative. Single organisms were 0.4 to 0.5 by 0.9 to 1.5 μm in size, nonmotile, and non-spore forming and had poly-β-hydroxybutyrate inclusions. The doubling time of strain L1 on acetone-CO-nitrate at the optimal pH of 7 to 8 and the optimal temperature of 30 to 37°C was 12 h. More than 0.2% NaCl or 10 mM thiosulfate inhibited growth. For oxygen or nitrate respiration, acetone and a few organic chemicals were utilized as carbon sources whereas many others could not be used (for details, see Results). Bicarbonate (or CO) was essential for growth on acetone but not for growth on acetoacetate. The growth yields for acetone-CO and acetoacetate were 28.3 and 27.3 g/mol, respectively. With acetone as the carbon source, poly-β-hydroxybutyrate accounted for up to 40% of the cellular dry weight The DNA of strain L1 had a G+C content of 68.5 mol% (as determined by high-performance liquid chromatography of nucleotides) or 70 mol% (as determined by the T method). The sequence of the gene coding for the 16S rRNA led to the classification of strain L1 in the paracoccus group of the alpha subclass of the . The new isolate is named sp. nov. DSM 6637.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1125
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1125.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1125&mimeType=html&fmt=ahah

References

  1. Anderson A. J., Dawes E. A. 1990; Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev 54:450–475
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum J. L., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev 43:260–296
    [Google Scholar]
  3. Bergmeyer H. U. 1983 Methoden der enzymatischen Analyse, 3rd. vol. I to III Verlag Chemie; Weinheim, Germany:
    [Google Scholar]
  4. Birnstiel M. L., Sells B. H., Purdom I. F. 1972; Kinetic properties of RNA molecules. J. Mol. Biol 63:21–39
    [Google Scholar]
  5. Bleicher K., Zellner G., Winter J. 1989; Growth of methanogens on cyclopentanol/CO2 and specificity of alcohol dehydrogenase. FEMS Microbiol. Lett 59:307–312
    [Google Scholar]
  6. Bonnet-Smits E. M., Robertson L. A., vanDijken J. A., Senior E., Kuenen J. G. 1988; Carbon dioxide fixation as the initial step in the metabolism of acetone by Thiosphaera pantotropha. J. Gen. Microbiol 134:2281–2289
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72:248–254
    [Google Scholar]
  8. Bray G. A. 1960; A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem 1:279–285
    [Google Scholar]
  9. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  10. Deutsche Sammlung von Mikroorganismen und Zellkulturen 1989 Catalogue of strains Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; Braunschweig, Germany:
    [Google Scholar]
  11. Dixon G. H., Kornberg H. L. 1959; Assay methods for key enzymes of the glyoxylate cycle. Biochem. J 72:3
    [Google Scholar]
  12. Doi Y., Kunioka M., Nakamura Y., Soga K. 1986; Nuclear magnetic resonance studies on poly-β-hydroxybutyrate and a copolyester of poly-β-hydroxybutyrate and β-hydroxyvalerate, isolated from Alcaligenes eutrophusH16. Macromolecules 19:2860–2864
    [Google Scholar]
  13. Drews G. 1983 Mikrobiologisches Praktikum. , 4th. Springer-Verlag; Berlin:
    [Google Scholar]
  14. Fachgruppe Wasserchemie GDCh 1981 Deutsche Einheitsverfahren zur Wasser-, Abwasserund Schlammuntersuchung, 10th contribution Verlag Chemie; Weinheim, Germany:
    [Google Scholar]
  15. Gillespie S., Gillespie D. 1971; Ribonucleic acid-deoxyribonucleic acid hybridization in aqueous solutions and in solutions containing formamide. Biochem. J 125:481–487
    [Google Scholar]
  16. Goepfert G. J. 1943; Studies on the mechanism of dehydrogenation by Fusarium Uni Bolley. XIX. Dehydrogenation of higher primary and secondary alcohols. J. Biol. Chem 140:525–534
    [Google Scholar]
  17. Goodhew C. E., Pettigrew G. W., Devreese B., Van Beeumen J., Van Spanning R. J. M., Baker S. C., Saunders N., Ferguson S. J., Thompson I. P. 1996; The cytochromes c-550 of Paracoccus denitrificans and Thiosphaera pantotropha: a need for re-evaluation of the history of Paracoccus cultures. FEMS Microbiol. Lett 137:95–101
    [Google Scholar]
  18. Hempelman E. 1982 Bilden und Auflõsen von Proteinstapeln. 111–116 Radola B. J.ed Elektrophorese Forum Walter de Gruyter; Berlin:
    [Google Scholar]
  19. Janssen P. H., Schink B. 1995; 14CO2 exchange with acetoacetate catalyzed by dialysed cell-free extracts of the bacteria strain BunN grown with acetone and nitrate. Eur. J. Biochem 228:677–682
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 211–232 Munro H. N.ed Mamalian protein metabolism Academic Press; New York:
    [Google Scholar]
  21. Karr D. B., Waters J. K., Emerich D. W. 1983; Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl. Environ. Microbiol 46:1339–1344
    [Google Scholar]
  22. Kelly R. B., Cozzarelli N. R., Deutscher M. B., Lehmann J. R., Kornberg A. 1970; Enzymatic synthesis of DNA. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break. J. Biol. Chem 245:39–45
    [Google Scholar]
  23. Kretzer A., Andreesen J. R. 1991; A new pathway for isonicotinate degradation by Mycobacterium sp. INA I. J. Gen. Microbiol 137:1073–1080
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  25. Law J. H., Slepecky R. A. 1961; Assay of poly-β-hydroxybutyric acid. J. Bacteriol 82:33–36
    [Google Scholar]
  26. Levine S., Krampitz L. O. 1952; The oxidation of acetone by a soil diphtheroid. J. Bacteriol 64:645–650
    [Google Scholar]
  27. Ludwig W., Mittenhuber G., Friedrich C. G. 1993; Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int. J. Syst. Bacteriol 43:363–367
    [Google Scholar]
  28. Lukins H. B., Foster J. W. 1963; Methyl ketone metabolism in hydrocarbon-utilizing mycobacteria. J. Bacteriol 85:1074–1087
    [Google Scholar]
  29. Madigan M. T. 1990; Photocatabolism of acetone by nonsulfur purple bacteria. FEMS Microbiol. Lett 71:281–286
    [Google Scholar]
  30. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The ribosomal data base project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  31. Marmur J., Doty P. 1962; Determination of the base composition of desoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  32. Merck & Co., Inc. 1976 The Merck index–an encyclopedia of chemicals and drugs Merck & Co., Inc.; Rahway, N.J:
    [Google Scholar]
  33. Mirault M. E., Scherer K. 1971; Isolation of preribosome from HeLa cells and its characterization by electrophoresis on uniform and exponential gradient polyacrylamide gels. Eur. J. Biochem 23:372–384
    [Google Scholar]
  34. Ohara M., Katayama Y., Tsuzaki M., Nakamoto S., Kuraishi H. 1990; Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. Int. J. Syst. Bacteriol 40:292–296
    [Google Scholar]
  35. Ostle A. G., Holt J. G. 1982; Nile blue A as a fluorescent stain for poly-fi-hydroxybutyrate. Appl. Environ. Microbiol 44:238–241
    [Google Scholar]
  36. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J. Microbiol. Methods 4:303–306
    [Google Scholar]
  37. Platen H., Schink B. 1987; Methanogenic degradation of acetone by an enrichment culture. Arch. Microbiol 149:136–141
    [Google Scholar]
  38. Platen H., Schink B. 1989; Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria. J. Gen. Microbiol 135:883–891
    [Google Scholar]
  39. Platen H., Schink B. 1990; Enzymes involved in anaerobic degradation of acetone by a denitrifying bacterium. Biodegradation 1:243–251
    [Google Scholar]
  40. Platen H., Temmes A., Schink B. 1990; Anaerobic degradation of acetone by Desulfococcus biacutus sp. nov. Arch. Microbiol 154:355–361
    [Google Scholar]
  41. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 16:224–226
    [Google Scholar]
  42. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic Clostridia. FEMS Microbiol. Lett 113:125–128
    [Google Scholar]
  43. Rhuland L. E., Work E., Denman R. E., Hoare D. S. 1955; The behaviour of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J. Am. Soc 77:4844–4846
    [Google Scholar]
  44. Robertson L. A., Kuenen J. G. 1983; Thiosphaera pantotropha gen. nov., sp. nov., a facultatively anaerobic, facultatively autotrophic sulfur bacterium. J. Gen. Microbiol 129:2847–2855
    [Google Scholar]
  45. Schlegel H. G. 1992 Allgemeine Mikrobiologie. , 7th.316–321 Georg Thieme Verlag; Stuttgart:
    [Google Scholar]
  46. Siegel J. M. 1950; The metabolism of acetone by the photosynthetic bacterium Rhodopseudomonas gelatinosa. J. Bacteriol 60:595–606
    [Google Scholar]
  47. Stern J. R. 1956; Optical properties of acetoacetate-S-coenzyme and its metal chelates. J. Biol. Chem 218:971–983
    [Google Scholar]
  48. Taylor D. G., Trudgill P. W., Cripps R. E., Harris P. R. 1980; The microbial metabolism of acetone. J. Gen. Microbiol 118:159–170
    [Google Scholar]
  49. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol 137:163–167
    [Google Scholar]
  50. Vestal J. R., Perry J. J. 1969; Divergent metabolic pathways for propane and propionate utilization by a soil isolate. J. Bacteriol 99:216–221
    [Google Scholar]
  51. Walker P. G. 1954; A colorimetric method for the estimation of acetoacetate. Biochem. J 58:699–704
    [Google Scholar]
  52. Walther-Mauruschat A., Aragno M., Mayer F., Schlegel H. G. 1977; Micromorphology of gram-negative hydrogen bacteria. Arch. Microbiol 114:101–110
    [Google Scholar]
  53. Widdel F. 1986; Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl. Environ. Microbiol 51:1056–1062
    [Google Scholar]
  54. Widdel F. 1988 Microbiology and ecology of sulfateand sulfur-reducing bacteria. 469–585 Zehnder A. J. B.ed Biology of anaerobic microorganisms John Wiley & Sons; New York:
    [Google Scholar]
  55. Widdel F., Koehring G. W., Mayer F. 1983; Studies on the sulfatereducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov. Arch. Microbiol 134:284–294
    [Google Scholar]
  56. Winter J., Braun E., Zabel H.-P. 1987; Acetomicrobium faecalis spec, nov., a strictly anaerobic bacterium from sewage sludge, producing ethanol from pentoses. Syst. Appl. Microbiol 9:71–76
    [Google Scholar]
  57. Winter J., Lerp C., Zabel H.-P., Wildenauer F. X., König H., Schindler F. 1984; Methanobacterium wolfei sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst. Appl. Microbiol 5:457–466
    [Google Scholar]
  58. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem 238:2882–2886
    [Google Scholar]
  59. Zellner G., Stackebrandt E., Messner P., Tindall B. J., Conway de Macario E., Kneifel H., Sleytr U. B., Winter J. 1989; Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense sp. nov. and Methanocorpusculum bavaricum sp. nov. Arch. Microbiol 151:381–390
    [Google Scholar]
  60. Zellner G., Winter J. 1987; Secondary alcohols as hydrogen donors for CO2 reduction by methanogens. FEMS Microbiol. Lett 44:323–328
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1125
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error