1887

Abstract

Strictly anaerobic, gram-positive, nonsporing, thin rod-shaped organisms whose cells were 0.2 to 0.6 by 3 to 6 μm were isolated from a Hoechst Biohochreaktor (strain Fae [T = type strain]) and from the biofilm population of a fixed-film reactor treating sour whey (strain F). Strain F was vigorously motile during early logarithmic growth by means of peritrichously inserted flagella, while strain Fae was seldom motile and usually possessed no flagella. During the stationary growth phase both strains formed spheroplasts. The temperature optimum was close to 37°C (temperature range for growth, ≥17 to <45°C) and the pH optimum was 7.0 to 7.4 (pH range, 6.5 to 8.0) for both strains. The two organisms grew chemoorganotrophically on a number of mono- and disaccharides, including glucose and xylose; yeast extract was required for growth. The principal fermentation products from glucose included lactate, acetate, ethanol, formate, and CO. Hydrogen was not generated. The G+C contents of the DNAs of strains Fae and F were 55 and 54.5 mol%, respectively. The cell wall architecture was typical of gram-positive bacteria; the cells had an extraordinarily thin type A3α peptidoglycan layer containing muramic acid. Analysis of 16S ribosomal DNA sequences of the two new isolates demonstrated that they represent members of a new genus of bacteria in cluster IV of the domain and that the misclassified organism and are among their closest relatives. The names gen. nov., sp. nov. (type strain, strain Fae [= DSM 7168]) and sp. nov. (type strain, strain F [= DSM 4272]) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-871
1996-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-871.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-871&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol. Rev 43:260–296
    [Google Scholar]
  2. Cato E. P., Stackebrandt E. 1989 Taxonomy and phylogeny. 1–26 Minton N. P., Clarke D. J.ed Clostridia Plenum Press; New York:
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridisation from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  5. De Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J. Appl. Bacteriol 23:130–135
    [Google Scholar]
  6. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  7. Ezaki T., Oyaizu H., Yabuuchi E. 1992 The anaerobic gram-positive cocci. 1879–1892 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. II Springer; New York:
    [Google Scholar]
  8. Felsenstein J. 1993 PHYLIP (phylogeny inference package), version 3.5c University of Washington; Seattle:
    [Google Scholar]
  9. Hippe H., Andreesen J. R., Gottschalk G. 1992 The genus Clostridium–nonmedical. 1800–1866 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. II Springer; New York:
    [Google Scholar]
  10. Hofstad T. 1992 The genus Fusobacterium. 4114–4126 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. IV Springer; New York:
    [Google Scholar]
  11. Hohorst H. J. 1970 L(+)-Lactatbestimmung mit Lactat-Dehydrogenase und NAD. 1425–1429 Bergmeyer H. U.ed Methoden der enzymatischen Analyse Verlag Chemie; Weinheim, Germany:
    [Google Scholar]
  12. Holdeman L. V., Cato E. P., Moore W. E. C.ed 1977 Anaerobe laboratory manual. , 4th. Anaerobe Laboratory; Virginia Polytechnic Institute and State University, Blacksburg:
    [Google Scholar]
  13. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol 4:184–192
    [Google Scholar]
  14. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  16. Lang E., Lang H. 1972; Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z. Anal. Chem 260:8–10
    [Google Scholar]
  17. Lawson P. A., Llop-Perez P., Hutson R. A., Hippe H., Collins M. D. 1993; Towards a phylogeny of the Clostridia based on 16S rRNA sequences. FEMS Microbiol. Lett 113:87–92
    [Google Scholar]
  18. Maidak B. L., Larsen N., McCaughey M. J., Overbeck R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3483–3487
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  20. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem 31:426–428
    [Google Scholar]
  21. Rainey F. A., Janssen P. H. 1995; Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus. FEMS Microbiol. Lett 129:69–74
    [Google Scholar]
  22. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic Clostridia. FEMS Microbiol. Lett 113:125–128
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  24. Scardovi V., Trovatelli L. D. 1969; New species of bifid bacteria Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 123:64–88
    [Google Scholar]
  25. Schleifer K. H., Kandier O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 36:407–477
    [Google Scholar]
  26. Sleytr U. B., Messner P., Pum D. 1988; Analysis of crystalline bacterial surface layers by freeze-etching, metal shadowing, negative staining and ultrathin sectioning. Methods Microbiol 20:29–60
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA analysis in the present species definition. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
  29. Weiss N., Schleifer K.-H., Kandler O. 1981; The peptidoglycan types of Gram-positive anaerobic bacteria and their taxonomic implications. Rev. Inst. Pasteur Lyon 14:3–12
    [Google Scholar]
  30. Woese C. R., Stackebrandt E., Macy T. J., Fox G. E. 1985; A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol 6:143–151
    [Google Scholar]
  31. Zellner G., Stackebrandt E., Messner P., Tindall B. J., Conway de Macario E., Kneifel H., Sleytr U. B., Winter J. 1989; Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov. Arch. Microbiol 151:381–390
    [Google Scholar]
  32. Zellner G., Vogel P., Kneifel H., Winter J. 1987; Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia. Appl. Microbiol. Biotechnol 27:306–314
    [Google Scholar]
  33. Zellner G., Winter J. 1987; Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst. Appl. Microbiol 9:284–292
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-871
Loading
/content/journal/ijsem/10.1099/00207713-46-4-871
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error