1887

Abstract

Cytoplasmic fractions from species of the genera , and were assayed for NADH oxidase (NADH ox), ATP- and PP-dependent phosphofructokinase (PFK), ATP- and PP-dependent deoxyguanosine kinase (dGUOK), thymidine kinase (TK), TMP kinase (TMPK), glucose-6-phosphate dehydrogenase (G6Pde), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), phosphoenolpyruvate carboxylase, hypoxanthine-guanine phosphoribosyl transferase, dUTPase, and uracil-DNA glycosylase (UNG) activities. Membrane fractions were also examined for NADH ox activity. These activities were used as indicators of the presence and relative activities of major metabolic and DNA repair pathways. This was the first study to determine the presence of these enzymes in members of the genera and . Using the data obtained, we constructed a preliminary scheme for distinguishing genera of the class on the basis of the results of signature functional enzyme assays. This scheme includes phylogenetic relationships deduced from rRNA analyses, but is more informative with respect to metabolic potential. The criteria used include the presence of PP-dependent PFK, urease, dUTPase, and dGUOK activities. ELCN-1 (T = type strain), M-1, F7, TAC, L1, PG18, and PN525 were similar in most respects. NADH ox activity was localized in the cytoplasm of these organisms. These strains had ATP-dependent PFK, MDH, LDH, ATP- and PP-dependent dGUOK, and UNG activities, but not dUTPase or G6Pde activities. In contrast, C112, 19L, C1, PG49, and 72-043 had membrane-localized NADH ox activity, PP-dependent PFK, G6Pde, and dUTPase activities, and significantly lower MDH and LDH activities and exhibited a faster rate with PP than with ATP in the dGUOK reaction. All of the members of the tested had hypoxanthine-guanine phosphoribosyl transferase, phosphoenolpyruvate carboxylase, and (except for TACf) UNG activities. All of the strains except PN525 had TK, TMPK, and UNG activities. TAC was distinguished by having no detectable dUTPase, UNG, TK, and TMPK activities, indicating that there is a severe restriction in or an absence of a synthetic route to dTTP. Our data also suggest that PN525 is a member of an unrecognized metabolic subgroup of the genus or is not an strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-885
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-885.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-885&mimeType=html&fmt=ahah

References

  1. Bork P., Ouzounis C., Casari G., Schneider R., Sander C., Dolan M., Gilbert W., Gillivet P. M. 1995; Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Mol. Microbiol 16:955–987
    [Google Scholar]
  2. Chou A C., Wilson J. E. 1975; Hexokinase from rat brain. Methods Enzymol 42:20–25
    [Google Scholar]
  3. Cordwell S. J., Wilkins M. R., Cerpa-Poljak A., Gooley A. A., Duncan M., Williams K. L., Humphery-Smith I. 1995; Cross-species identification of proteins separated by two-dimensional gel electrophoresis using matrixassisted laser desorption ionisation/time-of-flight mass spectrometry and amino acid composition. Electrophoresis 16:438–443
    [Google Scholar]
  4. Davis J. W. Jr., Manolukas J. T., Capo B. E., Pollack J. D. 1990; Pyruvate metabolism and the absence of a tricarboxylic acid cycle in Ureaplasma urealyticum. Zentralbl. Bakteriol. Suppl 20:666–669
    [Google Scholar]
  5. Desantis D., Tryon V. V., Pollack J. D. 1989; Metabolism of the mollicutes: the Embden-Meyerhof-Parnas pathway and the hexose monophosphate shunt. J. Gen. Microbiol 135:683–691
    [Google Scholar]
  6. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M., Fritchman J. L., Weidman J. F., Small K. V., Sandusky M., Fuhrmann J., Nguyen D., Utterback T. R., Saudek D. M., Phillips C. A., Merrick J. M., Tomb J.-F., Dougherty B. A., Bott K. F., Hu P.-C., Lucier T. S., Peterson S. N., Smith H. O., Hutchison C. A. III, Venter J. C. 1995; The Mycoplasma genitalium genome sequence reveals a minimal gene complement. Science 270:397–403
    [Google Scholar]
  7. International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of the Mollicutes 1995; Proposal for minimum standards for descriptions of new species of the class Mollicutes. Int. J. Syst. Bacteriol 45:605–612
    [Google Scholar]
  8. Lee L.-S., Cheng Y.-C. 1977; Human thymidylate kinase. Purification, characterization and kinetic behaviour of the thymidylate kinase derived from chronic myelocytic leukemia. J. Biol. Chern 252:5686–5691
    [Google Scholar]
  9. Manolukas J. T., Barile M. F., Chandler D. K. F., Pollack J. D. 1988; Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. J. Gen. Microbiol 134:791–800
    [Google Scholar]
  10. Manolukas J. T., Williams M. V., Pollack J. D. 1989; The anaplerotic phosphenolpyruvate carboxylase of the tricarboxylic acid cycle deficient Acholeplasma laidlawii B-PG9. J. Gen. Microbiol 135:251–256
    [Google Scholar]
  11. McElwain M. C., Chandler D. K. F., Barile M. F., Young T. F., Tryon V. V., Davis J. W. Jr., Petzel J. P., Chang C.-J., Williams M. V., Pollack J. D. 1988; Purine and pyrimidine metabolism in mollicutes species. Int. J. Syst. Bacteriol 38:417–423
    [Google Scholar]
  12. McElwain M. C., Pollack J. D. 1987; Synthesis of deoxymononucleotides in mollicutes: dependence on deoxyribose-l-phosphate and PPi- J. Bacteriol 169:3647–3653
    [Google Scholar]
  13. Meyer-Siegler K., Mauro D. J., Seal G., Wurzer J., deRiel J. K., Sirover M. A. 1991; A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 88:8460–8464
    [Google Scholar]
  14. Neale G. A. M., Mitchell A., Finch L. R. 1983; Pathways of pyrimidine deoxyribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides. J. Bacteriol 154:17–22
    [Google Scholar]
  15. Neale G. A. M., Mitchell A., Finch L. R. 1984; Uptake and utilization of deoxynucleoside 5’-monophosphates by Mycoplasma mycoides subsp. mycoides. J. Bacteriol 158:943–947
    [Google Scholar]
  16. Neimark H. C., Lemcke R. 1972; Occurrence and properties of lactic dehydrogenase of fermentative mycoplasmas. J. Bacteriol 111:633–640
    [Google Scholar]
  17. Pancholi V., Fischetti V. A. 1992; A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J. Exp. Med 176:415–426
    [Google Scholar]
  18. Pancholi V., Fischetti V. A. 1993; Glyceraldehyde-3-phosphate dehydrogenase on the surface of a group A streptococci is also an ADP-ribosylating enzyme. Proc. Natl. Acad. Sci. USA 90:8154–8158
    [Google Scholar]
  19. Peterson S. N., Lucier T., Heitzman K., Smith E. A., Bott K. F., Hu P.-C., Hutchison C. A. III 1995; Genetic map of the Mycoplasma genitalium chromosome. J. Bacteriol 177:3199–3204
    [Google Scholar]
  20. Petzel J. M., McElwain M. C., Desantis D., Manolukas J., Williams M. V., Hartman P. A., Allison M. J., Pollack J. D. 1989; Enzymic activities of carbohydrate, purine, and pyrimidine metabolism in the Anaeroplasmataceae (class Mollicutes). Arch. Microbiol 152:309–316
    [Google Scholar]
  21. Pollack J. D. 1975; Localization of reduced nicotinamide adenine dinucleotide oxidase activity in Acholeplasma and Mycoplasma species. Int. J. Syst. Bacteriol 25:108–113
    [Google Scholar]
  22. Pollack J. D. 1979 Respiratory pathways and energy yielding mechanisms. 187–211 Barile M. F., Razin S.ed The mycoplasmas 1 Academic Press, Inc.; New York:
    [Google Scholar]
  23. Pollack J. D. 1986; Metabolic distinctiveness of ureaplasmas. Pediatr. Infect. Dis 5:S305–S307
    [Google Scholar]
  24. Pollack J. D. 1992 Carbohydrate metabolism and energy conservation. 181–200 Maniloff J., McElhaney R. N., Finch L. R., Baseman J. B.ed Mycoplasmas: molecular biology and pathogenesis American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  25. Pollack J. D. 1995 Methods for testing metabolic activities in mollicutes. 277–286 Razin S., Tully J. G.ed Molecular and diagnostic procedures for mycoplasmology 1 Academic Press, Inc.; New York:
    [Google Scholar]
  26. Pollack J. D., Banzon J., Donelson K., Tully J. G., Davis J. W. Jr., Hackett K. J., Agbanyim C., Miles R. J. 1996; Reduction of benzyl viologen distinguishes genera of the class Mollicutes. Int. J. Syst. Bacteriol 46:881–884
    [Google Scholar]
  27. Pollack J. D., McElwain M. C., Desantis D., Manolukas J. T., Tully J. G., Chang C.-J., Whitcomb R. F., Hackett K. J., Williams M. V. 1989; Metabolism of members of the Spiroplasmataceae. Int. J. Syst. Bacteriol 39:406–412
    [Google Scholar]
  28. Pollack J. D., Razin S., Cleverdon R. C. 1965; Localization of enzymes in Mycoplasma. J. Bacteriol 90:617–622
    [Google Scholar]
  29. Pollack J. D., Williams M. V. 1986; PPrdependent phosphofructotransferase (phosphofructokinase) activity in the mollicutes (mycoplasma) Acholeplasma laidlawii. J. Bacteriol 165:53–60
    [Google Scholar]
  30. Rogers M. J., Simmons J., Walker R. T., Weisburg W. G., Woese C. R., Tanner R. S., Robinson I. M., Stahl D. A., Olsen G., Leach R. H., Maniloff J. 1985; Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc. Natl. Acad. Sci. USA 82:1160–1164
    [Google Scholar]
  31. Tryon V. V., Pollack J. D. 1984; Purine metabolism in Acholeplasma laidlawii B-PG9: novel PPj-dependent nucleoside kinase activity. J. Bacteriol 159:265–270
    [Google Scholar]
  32. Tryon V. V., Pollack J. D. 1985; Distinctions in Mollicutes purine metabolism: pyrophosphate-dependent nucleoside kinase and dependence on guanylate salvage. Int. J. Syst. Bacteriol 35:497–501
    [Google Scholar]
  33. Tully J. G., Bove J. M., Laigret F., Whitcomb R. F. 1993; Revised taxonomy of the class Mollicutes: proposed elevation of a monophyletic cluster of arthropod-associated mollicutes to ordinal rank (Entomoplasmatales ord. nov.) with provision for familial rank to separate species with nonhelical morphology (Entomoplasmataceae fam. nov.) from helical species (Spiroplasmataceae), and emended descriptions of the order Mycoplasmatales, family Mycoplasmataceae. Int. J. Syst. Bacteriol 43:378–385
    [Google Scholar]
  34. Wasinger V. C., Cordwell S. J., Cerpa-Poljak A., Yan J. X., Gooley A. A., Wilkins M. R., Duncan M. W., Harris R., Williams K. L., Humphery-Smith I. 1995; Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094
    [Google Scholar]
  35. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., VanEtten J., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol 171:6455–6467
    [Google Scholar]
  36. Whitcomb R. F., Hackett K. J. 1989 Why are there so many species of Mollicutes? An essay on prokaryote diversity. 205–240 Knutson L., Stoner A. K.ed Biotic diversity and germ plasm preservation, global imperative Kluwer Academic Publishers; Dordrecht, The Netherlands:
    [Google Scholar]
  37. Williams M. V., Pollack J. D. 1984; Purification and characterization of a dUTPase from Acholeplasma laidlawii B-PG9. J. Bacteriol 159:278–282
    [Google Scholar]
  38. Williams M. V., Pollack J. D. 1985; Pyrimidine deoxyribonucleotide metabolism in Acholeplasma laidlawii B-PG9. J. Bacteriol 161:1029–1033
    [Google Scholar]
  39. Williams M. V., Pollack J. D. 1988 Uracil-DNA glycosylase activity. Relationship to proposed biased mutation pressure in the class mollicutes. 440–444 Moses R. E., Summers W. C.ed DNA replication and mutagenesis American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  40. Williams M. V., Pollack J. D. 1990; A mollicute (mycoplasma) DNA repair enzyme: purification and characterization of uracil-DNA glycosylase. J. Bacteriol 172:2979–2985
    [Google Scholar]
  41. Williams M. V., Pollack J. D. 1990; The importance of differences in the pyrimidine metabolism of the mollicutes. Zentralbl. Bakteriol. Suppl 20:163–171
    [Google Scholar]
  42. Woese C. R., Maniloff J., Zablen L. B. 1980; Phylogenetic analysis of the mycoplasmas. Proc. Natl. Acad. Sci. USA 77:494–498
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-885
Loading
/content/journal/ijsem/10.1099/00207713-46-4-885
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error