1887

Abstract

We determined almost complete flagellin gene sequences of various species and aligned them with previously published sequences. A neighbor-joining phylogenetic analysis showed that the genus was divided into the following three major clusters: New World relapsing fever borreliae and ), Old World relapsing fever borreliae (, and ), and Lyme disease borreliae ( sensu stricto, , and ). Agents of animal spirochetosis ( and ) and species of unknown pathogenicity ( and ) were related to relapsing fever borreliae. Although the Lyme disease borreliae, two related species ( and ), and some newly described genomic groups (groups PotiB2, VS116, DN127, Hk501, and Ya501) were closely related to each other, each taxon formed an independent branch on the phylogenetic tree. The data obtained in this study indicate that the flagellin genes are useful in taxonomy. To distinguish the Lyme disease borreliae from related organisms easily, we designed an oligonucleotide primer set for the flagellin gene and performed a PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. The primer set amplified an approximately 580-bp DNA fragment that included species-specific restriction sites, and ll, l, II, HincII, or l digestion of the product resulted in distinctively different PCR-RFLP patterns. The PCR-RFLP typing method which we developed should facilitate rapid identification of Lyme disease borreliae and related organisms obtained from biological and clinical specimens.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-898
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-898.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-898&mimeType=html&fmt=ahah

References

  1. Anderson J. F., Magnarelli L. A., LeFebvre R. B., Andreadis T. G., McAninch J. B., Perng G. C., Johnson R. C. 1989; Antigenically variable Borrelia burgdorferi isolates from cottontail rabbits and Ixodes dentatus in rural and urban areas. J. Clin. Microbiol 27:13–20
    [Google Scholar]
  2. Assous M. V., Postic D., Paul G., Nevot P., Baranton G. 1994; Individualisation of two new genomic groups among American Borrelia burgdorferi sensu lato strains. FEMS Microbiol. Lett 121:93–98
    [Google Scholar]
  3. Baranton G., Postic D., Saint Girons I., Boeriin P., Piffaretti J. C., Assous M., Grimont P. A. D. 1992; Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int. J. Syst. Bacteriol 42:378–383
    [Google Scholar]
  4. Barbour A. G. 1984; Immunochemical analysis of Lyme disease spirochetes. Yale J. Biol. Med 57:581–586
    [Google Scholar]
  5. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J. Biol. Med 57:521–525
    [Google Scholar]
  6. Barbour A. G., Hayes S. F. 1986; Biology of Borrelia species. Microbiol. Rev 50:381–400
    [Google Scholar]
  7. Barbour A. G., Heiland R. A., Howe T. R. 1985; Heterogeneity of major proteins in Lyme disease Borrelia: a molecular analysis of North American and European isolates. J. Infect. Dis 152:478–484
    [Google Scholar]
  8. Barbour A. G., Maupin G. O., Tetlow G. J., Carter C. J., Piesman J. 1996; Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. J. Infect. Dis 173:403–409
    [Google Scholar]
  9. Bissett M. L., Hill W. 1987; Characterization of Borrelia burgdorferi strains isolated from Ixodes pacificus ticks in California. J. Clin. Microbiol 25:2296–2301
    [Google Scholar]
  10. Bunikis J., Olsen B., Fingerte V., Bonnedahl J., Wilske B., Bergstrom S. 1996; Molecular polymorphism of the Lyme disease agent Borrelia garinii in northern Europe is influenced by a novel enzootic Borrelia focus in the North Atlantic. J. Clin. Microbiol 34:364–368
    [Google Scholar]
  11. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. 1982; Lyme disease–a tick borne spirochetosis?. Science 216:1317–1319
    [Google Scholar]
  12. Canica M. M., Nato F., du Merle L., Mazie J. C., Baranton G., Postic D. 1993; Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand. J. Infect. Dis 25:441–448
    [Google Scholar]
  13. Casjens S., Delange M., Ley H. L., Rosa P. A., Huang W. M. 1995; Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order. J. Bacteriol 177:2769–2780
    [Google Scholar]
  14. Casjens S., Huang W. M. 1993; Linear chromosomal physical and genetic map of Borrelia burgdorferi, the Lyme disease agent. Mol. Microbiol 8:967–980
    [Google Scholar]
  15. Davidson B. E., MacDougall J., Saint Girons I. 1992; Physical maps of the linear chromosome of the bacterium Borrelia burgdorferi 212. J. Bacteriol 174:3766–3774
    [Google Scholar]
  16. Debue M., Gautier P., Hackel C., Van Eisen A., Herzog A., Bigaignon G., Bollen A. 1991; Detection of Borrelia burgdorferi in biological samples using the polymerase chain reaction assay. Res. Microbiol 142:565–572
    [Google Scholar]
  17. Demaerschalck I., ben Messaoud A., de Kesel M., Hoyois B., Lobet Y., Hoet P., Bigaignon G., Bollen A., Godfroid E. 1995; Simultaneous presence of different Borrelia burgdorferi genospecies in biological fluids of Lyme disease patients. J. Clin. Microbiol 33:602–608
    [Google Scholar]
  18. Dykhuizen D. E., Polin D. S., Dunn J. J., Wilske B., Preac-Mursic V., Dattwyler R. J., Luft B. J. 1993; Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc. Natl. Acad. Sci. USA 90:10163–10167
    [Google Scholar]
  19. Fukunaga M. 1994 Ribotyping of Borrelia species associated with Lyme disease. 121–131 Proceedings of the International Symposium on Lyme Disease in Japan Hamamatsu; Shizuoka, Japan:
    [Google Scholar]
  20. Fukunaga M., Hamase A. 1995; Outer surface protein C gene sequence analysis of Borrelia burgdorferi sensu lato isolates from Japan. J. Clin. Microbiol 33:2415–2420
    [Google Scholar]
  21. Fukunaga M., Hamase A., Okada K., Inoue H., Tsuruta Y., Miyamoto K., Nakao M. 1996; Characteiization of spirochetes isolated from Ixodes tanuki, Ixodes turdus, and Ixodes columnae ticks in comparison with Borrelia burgdorferi sensu lato strains. Appl. Environ. Microbiol 62:2338–2344
    [Google Scholar]
  22. Fukunaga M., Koreki Y. 1995; The flagellin gene of Borrelia miyamotoi sp. nov., and its phylogenetic relationship among Borrelia species. FEMS Microbiol. Lett 134:255–258
    [Google Scholar]
  23. Fukunaga M., Koreki Y. 1996; A phylogenetic analysis of Borrelia burgdorferi sensu lato isolates associated with Lyme disease in Japan by flagellin gene sequence determination. Int. J. Syst. Bacteriol 46:416–421
    [Google Scholar]
  24. Fukunaga M., Sohnaka M. 1992; Tandem repeat of the 23S and 5S ribosomal RNA genes in Borrelia burgdorferi, the etiological agent of Lyme disease. Biochem. Biophys. Res. Commun 183:952–957
    [Google Scholar]
  25. Fukunaga M., Sohnaka M., Yanagihara Y. 1993; Analysis of Borrelia species associated with Lyme disease by rRNA gene restriction fragment length polymorphism. J. Gen. Microbiol 139:1141–1146
    [Google Scholar]
  26. Fukunaga M., Takahashi Y., Tsuruta Y., Matsushita O., Ralph D., McClelland M., Nakao M. 1995; Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int. J. Syst. Bacteriol 45:804–810
    [Google Scholar]
  27. Fukunaga M., Yanagihara Y., Sohnaka M. 1992; The 23S/5S ribosomal RNA genes (rrl/nf) are separate from the 16S ribosomal RNA gene (rrs) in Borrelia burgdorferi, the aetiological agent of Lyme disease. J. Gen. Microbiol 138:871–877
    [Google Scholar]
  28. Gassmann G. S., Jacobs E., Deutzmann R., Göbel U. B. 1991; Analysis of the Borrelia burgdorferi GeHo fla gene and antigenic characterization of its gene product. J. Bacteriol 173:1452–1459
    [Google Scholar]
  29. Higgines D. G., Bleasby A. J., Fuchs R. 1992; CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci 8:189–191
    [Google Scholar]
  30. Hughes C. A. N., Kodner C. B., Johnson R. C. 1992; DNA analysis of Borrelia burgdorferi NCH-1, the first northcentral U.S. human Lyme disease isolate. J. Clin. Microbiol 30:698–703
    [Google Scholar]
  31. Jauris-Heipke S., Fuchs R., Motz M., Preac-Mursic V., Schwab E., Soutschek E., Will G., Wilske B. 1993; Genetic heterogeneity of the genes coding for the outer surface protein C (OspC) and the flagellin of Borrelia burgdorferi. Med. Microbiol. Immunol 182:37–50
    [Google Scholar]
  32. Jauris-Heipke S., Liegel G., Preac-Mursic V., Rossler D., Schwab E., Soutschek E., Will G., Wilske B. 1995; Molecular analysis of genes encoding outer surface protein C (OspC) of Borrelia burgdorferi sensu lato: relationship to ospC genotype and evidence of lateral gene exchange of ospC. J. Clin. Microbiol 33:1860–1866
    [Google Scholar]
  33. Johnson R. C., Hyde F. W., Schmid G. P., Brenner D. J. 1984; Borrelia burgdorferi sp. nov.: etiological agent of Lyme disease. Int. J. Syst. Bacteriol 34:496–497
    [Google Scholar]
  34. Kawabata H., Masuzawa T., Yanagihara Y. 1993; Genomic analysis of Borrelia japónica sp. nov. isolated from Ixodes ovatus in Japan. Microbiol. Immunol 37:843–848
    [Google Scholar]
  35. Lebech A. M., Hansen K. 1992; Detection of Borrelia burgdorferi DNA in urine samples from patients with early and late Lyme neuroborreliosis by polymerase chain reaction. J. Clin. Microbiol 30:1646–1653
    [Google Scholar]
  36. Lebech A. M., Hindersson P., Vuust J., Hansen K. 1991; Comparison of in vitro culture and polymerase chain reaction for detection of Borrelia burgdorferi in tissue from experimentally infected animals. J. Clin. Microbiol 29:731–737
    [Google Scholar]
  37. Liveris D., Gazumyan A., Schwartz I. 1995; Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol 33:589–595
    [Google Scholar]
  38. Luft B. J., Pawagi S., Jiang W., Fissene S., Gorevic P. D., Dunn J. J. 1992; Analysis and expression of the Borrelia burgdorferi P/Gau fla gene: identification of heterogeneity with the B31 strain. FEMS Microbiol. Lett 72:63–67
    [Google Scholar]
  39. Marconi R. T., Garon C. F. 1992; Development of polymerase chain reaction primer sets for diagnosis of Lyme disease and for species-specific identification of Lyme disease isolates by 16S rRNA signature nucleotide analysis. J. Clin. Microbiol 30:2830–2834
    [Google Scholar]
  40. Marconi R. T., Garon C. F. 1992; Identification of a third genomic group of Borrelia burgdorferi through signature nucleotide analysis and 16S rRNA sequence determination. J. Gen. Microbiol 138:533–536
    [Google Scholar]
  41. Marconi R. T., Garon C. F. 1992; Phylogenetic analysis of the genus Borrelia: a comparison of North American and European isolates of Borrelia burgdorferi. J. Bacteriol 174:241–244
    [Google Scholar]
  42. Marconi R. T., Liveris D., Schwartz I. 1995; Identification of novel insertion elements, RFLP patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japónica sp. nov. and genetic group 21038 isolates. J. Clin. Microbiol 33:2427–2434
    [Google Scholar]
  43. Masuzawa T., Okada Y., Beppu Y., Oku T., Kawamori F., Yanagihara Y. 1991; Immunological properties of Borrelia burgdorferi isolated from the Ixodes ovatus in Shizuoka, Japan. Microbiol. Immunol 35:913–919
    [Google Scholar]
  44. Moter S. E., Hofmann H., Wallich R., Simon M. M., Kramer M. D. 1994; Detection of Borrelia burgdorferi sensu lato in lesional skin of patients with erythema migrans and acrodermatitis chronica atrophicans by ospA- specific PCR. J. Clin. Microbiol 32:2980–2988
    [Google Scholar]
  45. Nakao M., Miyamoto K. 1993; Isolation of spirochetes from Japanese ixodid ticks, Ixodes tanuki, Ixodes turdus, and Ixodes columnae. Jpn. J. Sanit. Zool 44:49–52
    [Google Scholar]
  46. Nakao M., Miyamoto K., Fukunaga M. 1994; Borrelia japonica in nature: genotypic identification of spirochetes isolated from Japanese small mammals. Microbiol. Immunol 38:805–808
    [Google Scholar]
  47. Nakao M., Miyamoto K., Fukunaga M. 1994; Lyme disease spirochetes in Japan: enzootic transmission cycles in birds, rodents, and Ixodes persulcatus ticks. J. Infect. Dis 170:878–882
    [Google Scholar]
  48. Nakao M., Miyamoto K., Kawaguchi N., Hashimoto Y., Iizuka H. 1992; Comparison of Borrelia burgdorferi isolated from humans and ixodid ticks in Hokkaido, Japan. Microbiol. Immunol 36:1189–1193
    [Google Scholar]
  49. Nielsen S. L., Young K. K. Y., Barbour A. G. 1990; Detection of Borrelia burgdorferi DNA by the polymerase chain reaction. Mol. Cell. Probes 4:7379
    [Google Scholar]
  50. Noppa L., Burman N., Sadziene A., Barbour A. G., Bergstrom S. 1995; Expression of the flagellin gene in Borrelia is controlled by an alternative r factor. Microbiology 141:85–93
    [Google Scholar]
  51. Ojaimi C., Davidson B. E., Saint Girons I., Old I. G. 1994; Conservation of gene arrangement and an unusual organization of rRNA genes in the linear chromosomes of the Lyme disease spirochetes Borrelia burgdorferi, Ä garinii and B. afzelii. Microbiology 140:2931–2940
    [Google Scholar]
  52. Olsen B., Jaenson T. G. T., Noppa L., Bunikis J., Bergstrom S. 1993; A Lyme borreliosis cycle in seabirds and Ixodes uriae ticks. Nature (London) 362:340–342
    [Google Scholar]
  53. Picken R. N. 1992; Polymerase chain reaction primers and probes derived from flagellin gene sequences for specific detection of the agents of Lyme disease and North American relapsing fever. J. Clin. Microbiol 30:99–114
    [Google Scholar]
  54. Postic D., Assous M. V., Grimont P. A. D., Baranton G. 1994; Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int. J. Syst. Bacteriol 44:743–752
    [Google Scholar]
  55. Ralph D., Postic D., Baranton G., Pretzman C., McClelland M. 1993; Species of Borrelia distinguished by restriction site polymorphisms in 16S rRNA genes. FEMS Microbiol. Lett 111:239–244
    [Google Scholar]
  56. Rosa P. A., Schwan T. G. 1989; A specific and sensitive assay for the Lyme disease spirochete Borrelia burgdorferi using the polymerase chain reaction. J. Infect. Dis 160:1018–1029
    [Google Scholar]
  57. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  58. Schwan T. G., Schrumpf M. E., Karstens R. H., Clover J. R., Wong J., Daugherty M., Struthers M., Rosa P. A. 1993; Distribution and molecular analysis of Lyme disease spirochetes, Borrelia burgdorferi, isolated from ticks throughout California. J. Clin. Microbiol 31:3096–3108
    [Google Scholar]
  59. Southern E. M. 1975; Detection of specific sequence among DNA fragments separated by gel electrophoresis. J. Mol. Biol 98:503–517
    [Google Scholar]
  60. Steere A. C., Malawista S. E., Hardin J. A., Ruddy S., Askenase P. W., Andiman W. A. 1977; Erythema chronicum migrans and Lyme arthritis. The enlarging clinical spectrum. Ann. Intern. Med 86:685–698
    [Google Scholar]
  61. Takahashi Y., Fukunaga M. 1996 Unpublished data
  62. Theisen M., Frederiksen B., Lebech A. M., Vuust J., Hansen K. 1993; Polymorphism in ospC gene of Borrelia burgdorferi and immunoreactivity of OspC protein: implications for taxonomy and for use of OspC protein as a diagnostic antigen. J. Clin. Microbiol 31:2570–2576
    [Google Scholar]
  63. Wallich R., Helmes C., Schaible U. E., Lobet Y., Moter S. E., Kramer M. D., Simon M. M. 1992; Evaluation of genetic divergence among Borrelia burgdorferi isolates by use of OspA, fla, HSP60, and HSP70 gene probes. Infect. Immun 60:4856–4866
    [Google Scholar]
  64. Wallich R., Moter S. E., Simon M. M., Ebnet K., Heiberger A., Kramer M. D. 1990; The Borrelia burgdorferi flagellum-associated 41-kilodalton antigen (flagellin): molecular cloning, expression, and amplification of the gene. Infect. Immun 58:1711–1719
    [Google Scholar]
  65. Wilske B., Preac-Mursic V., Göbel U. B., Graf B., Jauris S., Soutschek E., Schwab E., Zumstein G. 1993; An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J. Clin. Microbiol 31:340–350
    [Google Scholar]
  66. Wilske B., Preac-Mursic V., Jauris S., Hofmann A., Pradel I., Soutschek E., Schwab E., Will G., Wanner G. 1993; Immunological and molecular polymorphism of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect. Immun 61:2182–2191
    [Google Scholar]
  67. Yamaguti N., Tipton V. J., Keegan H. L., Toshioka S. 1971; Ticks of Japan, Korea, and the Ryukyu Islands. Brigham Young Univ. Sei. Bull. Biol. Ser 15:1–226
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-898
Loading
/content/journal/ijsem/10.1099/00207713-46-4-898
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error