1887

Abstract

is morphologically similar to caulobacters; however, it lacks a dimorphic life cycle. To determine the relatedness of the genus to dimorphic caulobacters and other prosthecate members of the α subgroup of the (α-), we isolated and sequenced 16S rRNA genes from four strains. Surprisingly, the results of phylogenetic analyses placed the fusiform caulobacters in a deeply rooted division of the that was most closely affiliated with the group and only distantly related to the α- The genus shares a common lineage in this division with , a polyprosthecate, heterotrophic bacterium. Consistent with this phylogenetic placement, menaquinones were isolated from strains and menaquinones have been isolated from strains and planctomycetes but not from members of the α- Thus, the genus is a second genus in the recently described order Members of the genus are susceptible to β-lactam antibiotics and contain -diaminopimelic acid, indicating that they, unlike members of the or , have peptidoglycan cell walls. This major phenotypic difference, together with the phylogenetic independence of the verrucomicrobia, indicates that these bacteria and the sources of related 16S ribosomal DNAs obtained from soils, freshwater, and the marine pelagic environment represent an unrecognized division of the .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-960
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-960.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-960&mimeType=html&fmt=ahah

References

  1. Albrecht W., Fischer A., Smida J., Stackebrandt E. 1987; Verrucomicrobium spinosum, a eubacterium representing an ancient line of descent. Syst. Appl. Microbiol 10:57–62
    [Google Scholar]
  2. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol 15:23–31
    [Google Scholar]
  3. Andresson O., Fridjonsson O. 1994; The sequence of the single 16S rRNA gene of the thermophilic eubacterium Rhodothermus marinus reveals a distant relationship to the group containing Flexibacter, Bacteroides, and Cytophaga species. J. Bacteriol 176:6165–6169
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  5. Clayton R. A., Sutton G., Hinkle J. P. S., Bult C., Fields C. 1995; Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int. J. Syst. Bacteriol 45:595–599
    [Google Scholar]
  6. Collins M. D. 1985 Analysis of isoprenoid quinones. 329–365 Gottschalk G.ed Methods in microbiology Academic Press; Orlando, Fla:
    [Google Scholar]
  7. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev 45:316–354
    [Google Scholar]
  8. DeBont J. A. M., Staley J. T., Pankratz H. S. 1970; Isolation and description of a non-motile, fusiform, stalked bacterium, a representative of a new genus. Antonie van Leeuwenhoek 36:397–407
    [Google Scholar]
  9. Devereux R., He S., Doyle C. L., Or klan d S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol 172:3609–3619
    [Google Scholar]
  10. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. 1995; Cycloclasticus pugetti gen. nov., sp. nov., an aromatic hydrocarbondegrading bacterium from marine sediments. Int. J. Syst. Bacteriol 45:116–123
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol 17:368–376
    [Google Scholar]
  12. Felsenstein J. 1989; PHYLIP–phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  13. Fischer A., Roggentin T., Shlesner H., Stackebrandt E. 1985; 16S rRNA oligonucleotide cataloguing and the phylogenetic placement of Stella humosa. Syst. Appl. Microbiol 6:43–47
    [Google Scholar]
  14. Fuhrman J. A, McCallum K., Davis A. A. 1993; Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol 59:1294–1302
    [Google Scholar]
  15. Gilbert D. G. 1992; SeqApp 1.9al69, a biological sequence editor and analysis for Macintosh computers. Published electronically on the Internet and available via anonymous file transfer ftp to ftp.bio.indiana.edu
  16. Gosink J. J., Staley J. T. 1995; Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl. Environ. Microbiol 61:3486–3489
    [Google Scholar]
  17. Gutell R. R. 1993; Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res 21:3051–3054
    [Google Scholar]
  18. Haswega T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J. Gen. Appl. Microbiol 29:319–322
    [Google Scholar]
  19. Henrici A. T., Johnson D. E. 1935; Studies of freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes. J. Bacteriol 30:61–93
    [Google Scholar]
  20. Hiorns W. D., Menthe B. A., Zehr J. P. 1996 Bacterial communities in diverse Adirondack lakes described by 16S rRNA gene sequences, abstr. N122. Abstracts of the 96th General Meeting of the American Society for Microbiology 1996 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  21. Jones M. 1905; A peculiar microorganism showing rosette formation. Zentralbl. Bakteriol. Parasitenkd. Infectionskr. Hyg. Abt. 2 14:459–463
    [Google Scholar]
  22. Koenig W., Schlesner H., Hirsch P. 1984; Cell wall studies on budding bacteria of the planctomyces-pasteuria group and on a Prosthecomicrobium sp. Arch. Microbiol 138:200–205
    [Google Scholar]
  23. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  24. Lee S. Y., Bollinger J., Bedicek D., Ogram A. 1996 Unpublished data
  25. Liesack W., Stackebrandt E. 1992; Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol 174:5072–5078
    [Google Scholar]
  26. Liesack W., Soeller R., Stewart T., Haas H., Giovannoni S., Stackebrandt E. 1992; The influence of tachytelically (rapidly) evolving sequences on the topology of phylogenetic trees–intrafamily relationships and the phylogenetic position of Planctomycetaceae as revealed by comparative analysis of 16S ribosomal RNA sequences. Syst. Appl. Microbiol 15:357–362
    [Google Scholar]
  27. Maddison W. P., Maddison D. R. 1992 MacClade: analysis of phylogeny and character evolution, version 3.0 Sinauer Associates; Sunderland, Mass:
    [Google Scholar]
  28. Merker R. L, Smit J. 1988; Characterization of the adhesive holdfast of marine and freshwater caulobacters. Appl. Environ. Microbiol 54:2078–2085
    [Google Scholar]
  29. Moore R. L., Schmidt J., Poindexter J., Staley J. T. 1978; Deoxyribonucleic acid homology among the caulobacters. Int. J. Syst. Bacteriol 28:349–353
    [Google Scholar]
  30. Nam C., Staley J. T. Unpublished data
  31. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci 10:41–43
    [Google Scholar]
  32. Olsen G. J., Woese C. R. 1993; Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123
    [Google Scholar]
  33. Omeliansky V. L. 1914; A new bacillus: Bacillus flagellatus. Zh. Mikrobiol. Epidemiol. Immunobiol 1:24
    [Google Scholar]
  34. Poindexter J. S. 1964; Biological properties and classification of the Caulobacter group. Bacteriol. Rev 28:231–295
    [Google Scholar]
  35. Poindexter J. S. 1978; Selection for nonbuoyant morphological mutants of Caulobacter crescentus. J. Bacteriol 135:1141–1145
    [Google Scholar]
  36. Poindexter J. S. 1981; The caulobacters: ubiquitous unusual bacteria. Microbiol. Rev 45:123–179
    [Google Scholar]
  37. Poindexter J. S. 1992 Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas, and Thiodendron. 2176–2196 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  38. Poindexter J. S. Personal communication
  39. Reysenbach A.-L., Wickham G. S., Pace N. R. 1994; Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol 60:2113–2119
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  41. Schlesner H. 1987; Verrucomicrobium spinosum gen. nov., sp. nov.: a fimbriated prosthecate bacterium. Syst. Appl. Microbiol 10:54–56
    [Google Scholar]
  42. Schlesner H., Bartels C., Sittig M., Dorsch M., Stackebrandt E. 1990; Taxonomic and phylogenetic studies on a new taxon of budding hyphal proteobacteria, Hirschia baltica gen. nov., sp. nov. Int. J. Syst. Bacteriol 40:443–451
    [Google Scholar]
  43. Schlesner H., Kath T., Fischer A., Stackebrandt E. 1989; Studies on the phylogenetic position of Prosthecomicrobium pneumaticum, P. enhydrum, Ancalomicrobium adetum, and various Prosthecomicrobium-hke bacteria. Syst. Appl. Microbiol 12:150–155
    [Google Scholar]
  44. Schmidt J. 1971; Prosthecate bacteria. Annu. Rev. Microbiol 25:93–110
    [Google Scholar]
  45. Sittig M., Schlesner H. 1993; Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst. Appl. Microbiol 16:92–103
    [Google Scholar]
  46. Stackebrandt E., Fischer A., Roggentin T., Wehmeyer U., Bomar D., Smida J. 1988; A phylogenetic survey of budding, and/or prosthecate, nonphototrophic eubacteria: membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter, and “Dichotomicrobium” to the alpha-subdivision of purple non-sulfur bacteria. Arch. Microbiol 149:547–556
    [Google Scholar]
  47. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  48. Stahl D. A., Key R., Flesher B., Smit J. 1992; The phylogeny of marine and freshwater caulobacters reflects their habitat. J. Bacteriol 174:2193–2198
    [Google Scholar]
  49. Staley J. T. 1968; Prosthesomicrobium and Ancalomicrobium: new freshwater prosthecate bacteria. J. Bacteriol 95:1921–1942
    [Google Scholar]
  50. Staley J. T. 1992 The genera Prosthecomicrobium, Ancalomicrobium, and Prosthecobacter. 2160–2164 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  51. Staley J. T., DeBont J. A. M., Dejonge K. 1976; Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie van Leeuwenhoek 42:333–342
    [Google Scholar]
  52. Staley J. T., Mandel M. 1973; Deoxyribonucleic acid base composition of Prosthecomicrobium and Ancalomicrobium strains. Int. J. Syst. Bacteriol 23:271–273
    [Google Scholar]
  53. Stove J. L., Stainier R. Y. 1962; Cellular differentiation in stalked bacteria. Nature (London) 196:1189–1192
    [Google Scholar]
  54. Swofford D. L. 1991 PAUP: phylogenetic analysis using parsimony Illinois Natural History Survey; Champaign:
    [Google Scholar]
  55. Ueda T., Suga Y., Matsuguchi T. 1995; Molecular phylogenetic analysis of a soil microbial community in a soybean field. Eur. J. Soil Sci 46:415–421
    [Google Scholar]
  56. Van de Peer Y., Neefs J., DeRijk P., DeVos P., DeWachter R. 1994; About the order of divergence of the major bacterial taxa during evolution. Syst. Appl. Microbiol 17:32–38
    [Google Scholar]
  57. Ward N., Rainey F. A., Stackebrandt E., Schlesner H. 1995; Unraveling the extent of diversity within the order Planctomycetales. Appl. Environ. Microbiol 61:2270–2275
    [Google Scholar]
  58. Ward-Rainey N., Rainey F. A., Schlesner H., Stackebrandt E. 1995; Assignment of hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 141:3247–3250
    [Google Scholar]
  59. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
  60. Wise M. G., McArthur J. V., Shimkets L. J. 1996 Microbial diversity in a Carolina bay as determined by 16S rRNA gene cloning and sequencing, abstr. Nllla. Abstracts of the 96th General Meeting of the American Society for Microbiology 1996 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  61. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  62. Zavarzin G. A. 1961; Budding bacteria. Microbiology (Engl. Transl. Mikrobiologiya) 30:774–791
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-960
Loading
/content/journal/ijsem/10.1099/00207713-46-4-960
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error