1887

Abstract

sensu lato is present all over the world. However, most species belonging to this complex have a limited distribution; the only exception is sensu stricto, which is encountered both in Europe and in the United States. The aim of this study was to clarify the way that sensu stricto migrated. To do this, we compared the genetic polymorphism of 33 sensu stricto strains isolated in Europe and 28 strains isolated in the United States by using both pulsed-field gel electrophoresis and arbitrarily primed PCR. Phylogenetic analysis of each of the two sets of data was performed by a genetic distance method and a parsimony method. The results were consistent and revealed that the American strains were more heterogeneous than the European strains. The hypothesis that sensu stricto was introduced to Europe from America rather than vice versa has to be considered.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-1-11
1997-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/1/ijs-47-1-11.html?itemId=/content/journal/ijsem/10.1099/00207713-47-1-11&mimeType=html&fmt=ahah

References

  1. Anthonissen F. M., Dekesel M., Hoet P. P., Bigaignon G. H. 1994; Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res. Microbiol. 145:327–331
    [Google Scholar]
  2. Assous M. V., Postic D., Paul G., Névot P., Baranton G. 1993; Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur. J. Clin. Microbiol. Infect. Dis. 12:261–268
    [Google Scholar]
  3. Baranton G., Postic D., Girons I. Saint, Boerlin P., Piffaretti J. C., Assous M., Grimont P. A. D. 1992; Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int. J. Syst. Bacteriol. 42:378–383
    [Google Scholar]
  4. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J. Biol. Med. 57:521–525
    [Google Scholar]
  5. Baril C, Herrmann J. C., Richaud C., Margarita D., Girons I. Saint. 1992; Scattering of rRNA genes on the physical map of the circular chromosome of Leptospira inteirogans serovar icterohaemorrhagiae. J. Bacteriol. 174:7566–7571
    [Google Scholar]
  6. Baril C, Richaud C., Baranton G., Girons I. Saint. 1989; Linear chromosome of Borrelia burgdorferi. Res. Microbiol. 140:507–516
    [Google Scholar]
  7. Belfaiza J., Postic D., Bellenger E., Baranton G., Girons I. Saint. 1993; Genomic fingerprinting of Borrelia burgdorferi sensu lato by pulsed-field gel electrophoresis. J. Clin. Microbiol. 31:2873–2877
    [Google Scholar]
  8. Casjens S., Delange M., Ley H. L. III, Rosa P., Huang W. M. 1995; Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order. J. Bacteriol. 177:2769–2780
    [Google Scholar]
  9. Davidson B. E., Macdougall J., Girons I. Saint. 1992; Physical map of the linear chromosome of the bacterium Borrelia burgdorferi 212, a causative agent of Lyme disease, and localization of rRNA genes. J. Bacteriol. 174:3766–3774
    [Google Scholar]
  10. Felsenstein J. 1989; PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  11. Ferdows M. S., Barbour A. G. 1989; Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sei. USA 86:5969–5973
    [Google Scholar]
  12. Fitch W. 1971; Toward defining the course of evolution: minimal change for a specific tree topology. Syst. Zool. 20:406–416
    [Google Scholar]
  13. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284
    [Google Scholar]
  14. Hyde F. W., Johnson R. C. 1984; Genetic relationship of Lyme disease spirochetes to Borrelia, Treponema, and Leptospira spp. J. Clin. Microbiol. 20:151–154
    [Google Scholar]
  15. Jauris-Heipke S., Liegl G., Preac-Mursic V., Röbler D., Schwab E., Soutschek E., Will G., Wilske B. 1995; Molecular analysis of genes encoding outer surface protein C (OspC) of Borrelia burgdorferi sensu lato: relationship to ospA genotype and evidence of lateral gene exchange of ospC. J. Clin. Microbiol. 33:1860–1866
    [Google Scholar]
  16. Jonsson M., Noppa L., Barbour A. G., Bergström S. 1992; Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp opérons of three isolates of different geographic origins. Infect. Immun. 60:1845–1853
    [Google Scholar]
  17. Kumar S., Tamura K., Masatoshi N. 1993 MEGA: molecular evolutionary genetics analysis, version 1.01 The Pennsylvania State University; University Park:
    [Google Scholar]
  18. Livey I. 1996 Personal communication
    [Google Scholar]
  19. Livey I., Gibbs C. P., Schuster R., Dorner F. 1995; Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia. Mol. Microbiol. 18:257–269
    [Google Scholar]
  20. Marconi R. T., Liveris D., Schwartz I. 1995; Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp.nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. J. Clin. Microbiol. 33:2427–2434
    [Google Scholar]
  21. Olsen B., Duffy D. C., Jaenson T. G. T., Gylfe A., Bonnedahl J., Bergström S. 1995; Transhemispheric exchange of Lyme disease spirochetes by seabirds. J. Clin. Microbiol. 33:3270–3274
    [Google Scholar]
  22. Postic D., Assous M. V., Grimont P. A. D., Baranton G. 1994; Diversity of Borrelia bwgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S) rrl (23S) intergenic spacer amplicons. Int. J. Syst. Bacteriol. 44:743–752
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  24. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy Freeman; San Francisco, Calif:
    [Google Scholar]
  25. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517
    [Google Scholar]
  26. Swofford D. L. 1992 PAUP: phylogenic analysis using parsimony, version 3.0 Illinois Natural History Survey; Champaign:
    [Google Scholar]
  27. Theisen M., Borre M., Mathiesen M. J., Mikkelsen B., Lebech A. M., Hansen K. 1995; Evolution of the Borrelia burgdorferi outer surface protein OspC. J. Bacteriol. 177:3036–3044
    [Google Scholar]
  28. Theisen M., Frederiksen B., Lebech A. M., Vuust J., Hansen K. 1993; Polymorphism in ospC gene of Borrelia burgdorferi and immunoreactivity of OspC protein: implications for taxonomy and for use of OspC protein as a diagnostic antigen. J. Clin. Microbiol. 31:2570–2576
    [Google Scholar]
  29. Van Dam A. P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C. P., Kramer M. D., Dankert J. 1993; Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 17:708–717
    [Google Scholar]
  30. Welsh J., cClelland M. M. 1990; Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213–7218
    [Google Scholar]
  31. Welsh J., Pretzman C., Postic D., Girons I. Saint, Baranton G., McClelland M. 1992; Genomic fingerprinting by arbitrarily primed polymerase chain reaction resolves Borrelia burgdorferi into three distinct phyletic groups. Int. J. Syst. Bacteriol. 42:370–377
    [Google Scholar]
  32. Wilske B., Preac-Mursic V., Göbel U. B., Graf B., Jauris S., Soutschek E., Schwab E., Zumstein G. 1993; An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J. Clin. Microbiol. 31:340–350
    [Google Scholar]
  33. Xu Y., Johnson R. C. 1995; Analysis and comparison of plasmid profiles of Borrelia burgdorferi sensu lato strains. J. Clin. Microbiol. 33:2679–2685
    [Google Scholar]
  34. Zumstein G., Fuchs R., Hofmann A., Preac-Mursic V., Soutschek E., Wilske B. 1992; Genetic polymorphism of the gene encoding the outer surface protein A (OspA) of Borrelia burgdorferi. Med. Microbiol. Immunol. 181:57–70
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-1-11
Loading
/content/journal/ijsem/10.1099/00207713-47-1-11
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error