1887

Abstract

Two numerically important bacteria in marine pulp mill effluent enrichment cultures were isolated. These organisms were gram-negative, rod-shaped, strictly aerobic bacteria. Isolate IRE-31 (T = type strain) produced hydrolytic enzymes for the breakdown of cellulose, xylan, chitin, gelatin, and Tween 80. It also utilized a variety of monosaccharides, disaccharides, amino acids, and volatile fatty acids for growth. Isolate KW-40 did not utilize natural polymers, but it could grow on a variety of monosaccharides, disaccharides, alcohols, and amino acids. It also utilized methanol and aromatic compounds. The surfaces of both organisms were covered by blebs and vesicles. 16S rRNA analyses placed both organisms in the γ-3 subclass of the phylum . They were related to , and , although a close association with any of these bacteria was not found. The guanine-plus-cytosine contents of strain IRE-31 and KW-40 were 57.6 and 54.9 mol%, respectively. On the basis of 16S rRNA sequence and phenotypic characterizations, these isolates were different enough so that they could be considered members of new genera. Thus, the following two new genera and species are proposed: , with type strain IRE-31 (= ATCC 700072), and , with type strain KW-40 (= ATCC 700074).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-369
1997-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-369.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-369&mimeType=html&fmt=ahah

References

  1. Antranikian G., Herzberg C., Mayer F., Gottschalk G. 1987; Changes in the cell envelope structure of Clostridium sp. strain EMI during massive production of a-amylase and pullulanase. FEMS Microbiol. Lett 41:193–197
    [Google Scholar]
  2. Atlas R. M., Horowitz A., Krichevsky M., Bej A. K. 1991; Response of microbial populations to environmental disturbances. Microb. Ecol 22:249–256
    [Google Scholar]
  3. Baumann P., Baumann L. 1981 The marine Gram-negative eubacteria: genera Photobacierium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes,. 1302–1331 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes Springer-Verlag; Berlin, Germany:
    [Google Scholar]
  4. Benner R., Moran M. A., Hodson R. E. 1986; Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes. Limnol. Oceanogr 31:89–100
    [Google Scholar]
  5. Britschgi T. B., Fallon R. D. 1994; PCR-amplification of mixed 16S rRNA genes from an anaerobic, cyanide-degrading consortium. FEMS Microbiol. Ecol 13:225–232
    [Google Scholar]
  6. Daniels L., Hanson R. S., Phillips J. A. 1994 Chemical analysis. 512–554 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.ed Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  7. Dobson S. J., McMeekin T. A., Franzmann P. D. 1993; Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. Int. J. Syst. Bacterio) 43:665–673
    [Google Scholar]
  8. Felsenstein J. 1989; PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Forsberg C. W., Beveridge T. J., Hellstrom A. 1981; Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ. Microbiol 42:886–896
    [Google Scholar]
  10. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst. Appl. Microbiol 11:16–19
    [Google Scholar]
  11. Fulthorpe R. R., Liss S. N., Allen D. G. 1993; Characterization of bacteria isolated from a bleached kraft pulp mill wastewater treatment plant. Can. J. Microbiol 39:13–24
    [Google Scholar]
  12. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol 42:568–576
    [Google Scholar]
  13. Gonzalez J. M., Whitman W. B., Hodson R. E., Moran M. A. 1996; Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol 62:4433–4440
    [Google Scholar]
  14. Gosink J. J., Staley J. T. 1995; Biodiversity of gas vacuolate bacteria from antarctic sea ice and water. Appl. Environ. Microbiol 61:3486–3489
    [Google Scholar]
  15. Robbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol 33:1225–1228
    [Google Scholar]
  16. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature (London) 178:703
    [Google Scholar]
  17. Laddaga R., McLeod R. A. 1982; Factors affecting the lytic susceptibility of marine and terrestrial bacteria. Can. J. Microbiol 28:414–424
    [Google Scholar]
  18. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  19. Ledyard K. M., DeLong E. F., Dacey J. W. H. 1993; Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch. Microbiol 160:312–318
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  21. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994 Determinative and cytological light microscopy. 21–41 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.ed Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  22. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol 176:1–6
    [Google Scholar]
  23. Palleroni N. J. 1984 Genus I. Pseudomonas,. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 Williams & Wilkins Co.; Baltimore, Md:
    [Google Scholar]
  24. Rayman M. K., McLeod R. A. 1975; Interaction of Mg2+ with peptidoglycan and its relation to the prevention of lysis of a marine pseudomonad. J. Bacteriol 122:650–659
    [Google Scholar]
  25. Robinson D. G., Ehlers U., Herken R., Herrmann B., Mayer F., Schiirmann F.-W. 1987 Methods of preparation for electron microscopy—an introduction for the biomedical sciences. Springer-Verlag; Berlin, Germany:
    [Google Scholar]
  26. Shiba T. 1992 The genus Roseobacter,. 2156–2159 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes Springer-Verlag; Berlin, Germany:
    [Google Scholar]
  27. Singh A. P., Butcher J. A. 1991; Bacterial degradation of wood cell walls: a review of degradation patterns. J. Inst. Wood Sci 12:143–157
    [Google Scholar]
  28. Singh A. P., Nilsson T., Daniel G. F. 1990; Bacterial attack of Pinus sylvestris wood under near anaerobic conditions. J. Inst. Wood Sci 11:237–249
    [Google Scholar]
  29. Skipper N., Sutherland M., Davies R. W., Kilburn D., Miller R. C. Jr., Warren A., Wong R. 1985; Secretion of a bacterial cellulase by yeast. Science 230:958–960
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1981 General characterization. 124 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  31. Stahl D. A., Amann R. I. 1991 Development and application of nucleic acid probes in bacterial systematics. 205–248 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley & Sons Ltd.; Chichester, England:
    [Google Scholar]
  32. Swofford D. 1990 PAUP: phylogenetic analysis using parsimony, version 3.0. Illinois Natural History Survey; Champaign:
    [Google Scholar]
  33. Takeuchi M., Sawada H., Oyaizu H., Yokota A. 1994; Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int. J. Syst. Bacteriol 44:308–314
    [Google Scholar]
  34. Tsai Y.-L., Olson B. H. 1991; Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol 57:1070–1074
    [Google Scholar]
  35. Van der Peer Y., Neefs J.-M., De Wachter R. 1990; Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins. J. Mol. Evol 30:463–476
    [Google Scholar]
  36. Vicuna R. 1988; Bacterial degradation of lignin. Enzyme Microb. Technol 10:646–655
    [Google Scholar]
  37. Widdel F., Kohring G.-W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov„ sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol 134:286–294
    [Google Scholar]
  38. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  39. Zimmermann W. 1990; Degradation of lignin by bacteria. J. Biotechnol 13:119–130
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-369
Loading
/content/journal/ijsem/10.1099/00207713-47-2-369
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error