1887

Abstract

A thermophilic anaerobic bacterium, designated strain BMA (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 μ) which stained gram negative. Strain BMA obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60°C (temperature range for growth, 50 to 65°C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G+C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMA is a member of the domain . The closest known bacterium is the moderate thermophile (similarity value, 88%). Strain BMA possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-505
1997-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-505.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-505&mimeType=html&fmt=ahah

References

  1. American Public Health Association 1992 Standard methods for the examination of water and wastewater. American Public Health Association; Washington, D.C:
    [Google Scholar]
  2. Andrews C., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int. J. Syst. Bacteriol 46:265–269
    [Google Scholar]
  3. Boone D. R., Liu Y., Zhao Z.-J., Balkwill D. L., Drake G. R., Stevens T. O., Aldrich H. C. 1995; Bacillus infemus sp. nov., an Fe(III)- and Mn(IV)- reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol 45:441–448
    [Google Scholar]
  4. Brewer P. G., Spencer D. W. 1971; Colorimetric determination of manganese in anoxic waters. Limnol. Oceanogr 16:107–112
    [Google Scholar]
  5. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol 44:992–993
    [Google Scholar]
  6. Caccavo F. Jr., Coates J. D., Rossello-Mora R. A., Ludwig W., Schleifer K. H., Lovley D. R., McInerney M. J. 1996; Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol 165:370–376
    [Google Scholar]
  7. Cayol J.-L., Ollivier B., Patel B. K. C., Ravot G., Magot M., Ageron E., Grimont P. A. D., Garcia J.-L. 1995; Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp./mm: comb, nov., and an emended description of Thermoanaerobacter brockii. Int. J. Syst. Bacteriol 45:783–789
    [Google Scholar]
  8. Davydova-Charakhch’yan I. A., Kuznetsova V. G., Mityushina L. L., Belayaev S. S. 1993; Methane-forming bacilli from oil fields of Tartaria and Western Siberia. Microbiology (Engl. Transl. Mikrobiologiya) 61:202–207
    [Google Scholar]
  9. Doetsch R. N. 1981 Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  10. Feigl F. 1958 Spot tests in inorganic analysis. Elsevier; New York, N.Y:
    [Google Scholar]
  11. Fiala G., Woese C. R., Langworthy T. A., Stetter K. O. 1990; Flexistipes sinusarabici, a novel genus and species of eubacteria occurring in the Atlantis II deep brines of the Red Sea. Arch. Microbiol 154:120–126
    [Google Scholar]
  12. Grassia G. S., McLean K. M., Glenat P., Bauld J., Sheehy A. J. 1996; A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol 21:47–58
    [Google Scholar]
  13. Jeanthon C., Reysenbach A.-L., L’Haridon S., Gambacorta A., Pace N. R., Glenat P., Prieur D. 1995; Thermotoga subterráneo sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol 164:91–97
    [Google Scholar]
  14. Ljungdahl L. G., Wiegel J. 1986 Working with anaerobic bacteria. 84–96 Demain A. L., Solomon N. A.ed Manual of industrial microbiology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  15. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J. P., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol 178:2402–2408
    [Google Scholar]
  16. Lovley D. R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev 55:259–287
    [Google Scholar]
  17. Lovley D. R. 1993; Dissimilatory metal reduction. Annu. Rev. Microbiol 47:263–290
    [Google Scholar]
  18. Lovley D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol 52:683–689
    [Google Scholar]
  19. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol 54:1472–1480
    [Google Scholar]
  20. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  21. Marmur M. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  22. Marmur M., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  23. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321
    [Google Scholar]
  24. Nazina T. N., Ivanova A. E., Golubeva O. V., Ibatullin R. R., Belyaev S. S., Ivanov M. V. 1995; Occurrence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field. Microbiology (Engl. Transl. Mikrobiologiya) 64:203–208
    [Google Scholar]
  25. Nealson K. H., Saffarini D. 1994; Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol 48:311–343
    [Google Scholar]
  26. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Prensier G., Egan A., Garcia J.-L., Ollivier B. 1995; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol 45:308–314
    [Google Scholar]
  27. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infemum gen. nov., sp. nov., a thermophilic sulfatereducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol 45:85–89
    [Google Scholar]
  28. Rossello-Mora R. A., Caccavo F. Jr., Osterlehner K., Springer N., Spring S., Schüler D., Ludwig W., Amann R., Vanncanney M., Schleifer K. H. 1994; Isolation and taxonomic characterisation of a halotolerant, facultative iron-reducing bacterium. Syst. Appl. Microbiol 17:569–573
    [Google Scholar]
  29. Semple K. M., Westlake D. W. S. 1987; Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can. J. Microbiol 33:366–371
    [Google Scholar]
  30. Slobodkin A. L., Eroshchev-Shak V. A., Kostrikina N. A., Lavrushin V. Y., Dainyak L. G., Zavarzin G. A. 1995; Magnetite formation by thermophilic anaerobic microorganisms. Dokl. Biol. Sci. (Engl. Transl. Dokl. Akad. Nauk SSSR) 345:663–666
    [Google Scholar]
  31. Sorensen J. 1982; Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environ. Microbiol 43:1472–1480
    [Google Scholar]
  32. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-505
Loading
/content/journal/ijsem/10.1099/00207713-47-2-505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error