1887

Abstract

New gram-positive bacteria were isolated from 1-year-old sludge from a wastewater treatment plant. The isolates are coccoid to rod-shaped, nonmotile aerobes that form neither spores nor mycelia. They are characterized by a peptidoglycan with directly cross-linked -diaminopimelic acid (type A1-γ), by the presence of menaquinone MK-8(H). and by the lack of mycolic acids. The strains have complex fatty acid patterns with i-C and straight-chain saturated and unsaturated fatty acids as major components. The G+C content of the DNA is 70 mol%. The results of chemotaxonomic studies and a 16S ribosomal DNA sequence comparison support our proposal to assign these bacteria to a new genus, the genus gen. nov.; the type species is sp. nov, and the type strain of is strain HKI 83 (= DSM 11140).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-529
1997-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-529.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-529&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem 81:461–466
    [Google Scholar]
  2. Collins M. D. 1992 The genus Brevibacterium,. 1351–1354 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; New York, N.Y.:
    [Google Scholar]
  3. Collins M. D., Brown J., Jones D. 1988; Brachybacterium faecium gen. nov., sp. nov., a coryneform bacterium from poultry deep litter. Int. J. Syst. Bacteriol 38:45–48
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol 100:221–230
    [Google Scholar]
  5. Cowan S. T., Steel K. J. 1965 Manual for the identification of medical bacteria. Cambridge University Press; Cambridge, United Kingdom:
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  7. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  8. Fernandez-Garayzabal J. F., Dominguez L., Pascual C., Jones D., Collins M. 1995; Phenotypic and phylogenetic characterization of some unknown coryneform bacteria isolated from bovine blood and milk: description of Sanguibacter gen. nov. Lett. Appl. Microbiol 20:69–75
    [Google Scholar]
  9. Funke G., Stubbs S., Altwegg M., Carlotti A., Collins M. D. 1994; Turicella otidis gen. nov., sp. nov., a coryneform bacterium isolated from patients with otidis media. Int. J. Syst. Bacteriol 44:270–273
    [Google Scholar]
  10. Gledhill W. E., Casida L. E. Jr. 1969; Predominant catalase-negative soil bacteria. III. Agromyces, gen. n., microorganisms intermediary to Actinomyces and Nocardia. Appl. Microbiol 18:340–349
    [Google Scholar]
  11. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int. J. Syst. Bacteriol 24:54–63
    [Google Scholar]
  12. Gordon R. E., Mihm J. M. 1957; A comparative study of some strains received as nocardiae. J. Bacteriol 73:15–27
    [Google Scholar]
  13. Gräfe U., Ritzau M., Ihn W., Möllmann U., Fleck W. F., Groth I., Reissbrodt R. 1994; A new microbial isoquinoline iron chelator from Streptomyces spec. 2002-104. J. Basic Microbiol 34:351–355
    [Google Scholar]
  14. Groth L, Schumann P., Weiss N., Martin K., Rainey F. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int. J. Syst. Bacteriol 46:234–239
    [Google Scholar]
  15. Gvozdyak O. R., Nogina T. M., Schumann P. 1992; Taxonomic study of the genus Brachybacterium’. Brachybacterium nesterenkovii sp. nov. Int. J. Syst. Bacteriol 42:74–78
    [Google Scholar]
  16. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J. Bacteriol 66:24–26
    [Google Scholar]
  17. Huss V. A. R., Fest H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol 4:184–192
    [Google Scholar]
  18. Janke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  19. Jones D., Collins M. D. 1988; Taxonomic studies on some human cutaneous coryneform bacteria: description of Dermabacter hominis gen. nov., sp. nov. FEMS Microbiol. Lett 51:51–56
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  21. Kalakoutskii L. V. 1989 Genus Intrasporangium Kalakoutskii, Kirillova and Krasil’nikov 1967, 79AL. 2395–2397 Williams S. T., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 4 The Williams and Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  22. Kästner M., Breuer-Jammali M., Mahro B. 1994; Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl. Microbiol. Biotechnol 41:267–273
    [Google Scholar]
  23. Kramer R. 1996; Genetic and physiological approaches for the production of amino acids. J. Biotechnol 45:1–21
    [Google Scholar]
  24. Kroppenstedt R. M. 1985 Fatty acids and menaquinone analysis of actinomycetes and related organisms. 173–189 Goodfellow M., Minnikin D. E.ed Chemical methods in bacterial systematics Academic Press; London, United Kingdom:
    [Google Scholar]
  25. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  26. Maisnierpatin S., Richard J. 1995; Activity and purification of linenscin OC2, an antibacterial substance produced by Brevibacterium linens OC2, an orange cheese coryneform bacterium. Appl. Environ. Microbiol 61:1847–1852
    [Google Scholar]
  27. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  29. Miller E. S., Woese C. R., Brenner S. 1991; Description of the erythromycin-producing bacterium Arthrobacter sp. strain NRRL B-3381 as Aeromicrobium erythreum gen. nov., sp. nov. Int. J. Syst. Bacteriol 41:363–368
    [Google Scholar]
  30. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol 88:200–204
    [Google Scholar]
  31. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J. Appl. Bacteriol 47:87–95
    [Google Scholar]
  32. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsiaceae fam. nov. Int. J. Syst. Bacteriol 46:1088–1092
    [Google Scholar]
  33. Saddler G. S., Tavecchia P., Lociuro S., Zanol M., Colombo L., Selva E. 1991; Analysis of madurose and other actinomycete whole cell sugars by gas chromatography. J. Microbiol. Methods 14:185–191
    [Google Scholar]
  34. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 36:407–477
    [Google Scholar]
  35. Schumann P., Prauser H., Rainey F. A., Stackebrandt E., Hirsch P. 1997; Friedmanniella antarctica gen. nov., sp. nov., an LL-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int. J. Syst. Bacteriol 47:278–283
    [Google Scholar]
  36. Stackebrandt E., Kroppenstedt R. M., Fowler V. J. 1983; A phylogenetic analysis of the family Dermatophilaceae. J. Gen. Microbiol 129:1831–1838
    [Google Scholar]
  37. Stackebrandt E., Smida J., Collins M. D. 1988; Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Gordona (Tsukamura). J. Gen. Appl. Microbiol 34:341–348
    [Google Scholar]
  38. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J. Appl. Bacteriol 72:315–321
    [Google Scholar]
  39. Suzuki K., Nagai K., Shimizu Y., Suzuki Y. 1994; Search for actinomycetes in screening for new bioactive compounds. Actinomycetologica 8:122–127
    [Google Scholar]
  40. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett 25:125–128
    [Google Scholar]
  41. Uchida K., Aida K. 1984; An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. L Gen. Appl. Microbiol 29:131–134
    [Google Scholar]
  42. Warwick S., Bowen T., McVeigh H., Embley T. M. 1994; A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudoamycolata in an emended genus Pseudonocardia. Int. J. Syst. Bacteriol 44:293–299
    [Google Scholar]
  43. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J. Gen. Appl. Microbiol 18:399–416
    [Google Scholar]
  44. Yokota A., Tamura T., Nishi T., Hasegawa T. 1993; Kineococcus aurantiacus gen. nov., sp. nov., a new gram-positive motile coccus with meso- diaminopimelic acid and arabinogalactan in the cell wall. Int. J. Syst. Bacteriol 43:52–57
    [Google Scholar]
  45. Yoshimi Y., Hiraishi A., Nakamura K. 1996; Isolation and characterization of Microsphaera multipartita gen. nov., sp. nov., a polysaccharide-accumulating gram-positive bacterium from activated sludge. Int. J. Syst. Bacteriol 46:519–525
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-529
Loading
/content/journal/ijsem/10.1099/00207713-47-2-529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error