1887

Abstract

Abstract

An extremely thermophilic archaeon, strain AL662, was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at a latitude of 21°N. This strain is a strictly anaerobic coccus, and its cells range from 0.8 to 2 p.m in diameter. The optimum temperature, pH, and Sea Salt concentration for growth are 85°C, 6, and 20 to 40 g/liter, respectively. Strain AL662 grows preferentially on proteolysis products, on a mixture of 20 amino acids, and on maltose in the presence of elemental sulfur. The membrane lipids consist of di- and tetraether glycerol lipids. The DNA G+C content is 58 mol%. Sequencing of the 16S rRNA gene showed that strain AL662 belongs to the genus On the basis of hybridization results, we propose that this strain should be placed in a new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-622
1997-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-622.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-622&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  2. Belkin S., Jannasch H. W. 1985; A new extremely thermophilic, sulfurreducing heterotrophic marine bacterium. Arch. Microbiol. 141:181–186
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917
    [Google Scholar]
  4. Blumentals I. I., Itoh M., Olson G. J., Kelly R. M. 1990; Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyracoccus furiosus. Appl. Environ. Microbiol. 56:1255–1262
    [Google Scholar]
  5. Dauga C., Grimont P. A. D. 1991; Nucleotide sequence of 16S rRNA from ten Serratia species. Res. Microbiol. 141:1139–1149
    [Google Scholar]
  6. Erauso G., Prieur D., Godfroy A., Raguénès G. 1995; Plate cultivation techniques for strictly anaerobic, thermophilic, sulfur-metabolizing archaea. 25–29 Robb F. T., Place A. R. Archaea: a laboratory manual Thermophiles. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  7. Godfroy A., Meunier J.-R., Guezennec J., Lesongeur F., Raguénès G., Rimbault A., Barbier G. 1996; Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeum isolated from deep-sea hydrothermal vent in North Fiji basin. Int. J. Syst. Bacteriol. 46:1113–1119
    [Google Scholar]
  8. Gonzalez J. M., Kato C., Horikoshi K. 1995; Thermococcuspeptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch. Microbiol. 164:159–164
    [Google Scholar]
  9. Guezennec J. Unpublished data
    [Google Scholar]
  10. Higgins D. G., Bleasby A. J., Fuchs R. 1992; CLUSTAL V: improved software for multiple sequence alignment. Comput. Applic. Biosci. 8:189–191
    [Google Scholar]
  11. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:1225–1228
    [Google Scholar]
  12. Huber R., Stöhr J., Honenhaus S., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1995; Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal environment. Arch. Microbiol. 164:255–264
    [Google Scholar]
  13. Kates M. 1964; Bacterial lipids. Adv. Lipid Res. 2:17–90
    [Google Scholar]
  14. Keller M., Braun F.-J., Dirmeieir R., Hafenbradl D., Burggraf S., Rachel R., Stetter K. O. 1995; Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch. Microbiol. 164:390–395
    [Google Scholar]
  15. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K. 1994; Thermococcus profundus sp. nov. A new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst. Appl. Microbiol. 17:232–236
    [Google Scholar]
  16. Ladrat C., Cornec L., Alayse-Danet A.-M., Barbier G. 1995; Mise en évidence d’enzymes thermostables chez des micro-organismes thermophiles d’origine hydrothermale. C. R. Acad. Sci. 318:423–429
    [Google Scholar]
  17. Langworthy T. A., Holzer G., Zeikus J. G., Tornabene T. G. 1983; Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune. Syst. Appl. Microbiol. 4:1–17
    [Google Scholar]
  18. Ma K., Loessner H., Heider J., Johnson M. K., Adams M. W. W. 1995; Effect of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase. J. Bacteriol. 177:4748–4756
    [Google Scholar]
  19. Ma K., Robb F. T., Adams M. W. W. 1994; Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl. Environ. Microbiol. 60:562–568
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  21. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernych N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst. Appl. Microbiol. 12:257–262
    [Google Scholar]
  22. Moensch T. T., Zeikus J. G. 1983; An improved preparation method for a titanium(III) media reductant. J. Microbiol. Methods 1:199–202
    [Google Scholar]
  23. Neuner A., Jannasch H. W., Belkin S., Stetter K. O. 1990; Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacterium. Arch. Microbiol. 153:205–207
    [Google Scholar]
  24. Pauly G. G., Van Vleet E. S. 1986; Acyclic archaebacterial ether lipids in swamp sediments. Geochim. Cosmochim. Acta 50:1117–1125
    [Google Scholar]
  25. Pledger R. J., Baross J. A. 1989; Characterization of an extremely thermophilic archaebacterium isolated from a black smoker polychaetc (Paralvinella sp.) at the Juan de Fuca Ridge. Syst. Appl. Microbiol. 12:249–256
    [Google Scholar]
  26. Popoff M. Y., Coynault C. 1980; Use of DEAE cellulose filters in the S1 nuclease method for bacterial deoxyribonucleic acid hybridization. Ann. Inst. Pasteur/Microbiol. (Paris) 131A:151–155
    [Google Scholar]
  27. Raguénès G., Meunier J. R., Antoine E., Godfroy A., Caprais J. C., Lesongeur F., Guezennec J., Barbier G. 1995; Biodiversité d’Archaea hyperthermophiles de sites hydrothermaux du Pacifique oriental. C. R. Acad. Sci. 318:395–402
    [Google Scholar]
  28. Rimbault A., Guezennec J., Fromage M., Niel P., Godfroy A., Rocchiccioli F. 1993; Organic acids and stable isotopes metabolic studies of a thermophilic sulfur-dependent anaerobic archaeon. J. Microbiol. Methods 18:329–338
    [Google Scholar]
  29. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  30. Saitou M., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  33. Ullman A., Jacob F., Monod J. 1967; Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the β-galactosidase structural gene of Escherichia coli. J. Mol. Biol. 24:339
    [Google Scholar]
  34. White D. C., Nickels J. D., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia (Berlin) 40:51–62
    [Google Scholar]
  35. Zillig W., Holtz I., Janekovic D., Schäfer W., Reiter W. D. 1983; The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4:88–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-622
Loading
/content/journal/ijsem/10.1099/00207713-47-3-622
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error