1887

Abstract

Abstract

A new moderately thermophilic proteolytic anaerobe, strain U, was isolated from mesophilic granular methanogenic sludge. The cells were spore-forming, motile rods that were 0.4 μm wide and 2.4 to 4 μm long and stained gram negative. Electron micrographs of thin sections revealed the presence of an atypical gram-positive cell wall. Optimum growth occurred at 55°C and at pH values between 7.0 and 7.5, with a doubling time of 30 min. The DNA base ratio of guanine plus cytosine was 31 mol%. The bacterium fermented proteins mainly to acetate, hydrogen, formate, and branched-chain fatty acids. Several amino acids, including glutamate, aspartate, arginine, histidine, threonine, methionine, and branched-chain amino acids, were also utilized. Glutamate was degraded to acetate, formate, hydrogen, and alanine. In addition, the strain degraded carbohydrates, including glucose, fructose, mannose, cellobiose, and starch, to acetate, ethanol, formate, lactate, and hydrogen. The results of a 16S rRNA sequence analysis phylogenetically placed strain U in the low-guanine-plus-cytosine-content subgroup of the gram-positive phylum. We propose to classify the described strain in the genus as a new species, The type strain of strain U, has been deposited in the Deutsche Sammlung von Mikroorganismen as strain DSM 10124.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-651
1997-07-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-651.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-651&mimeType=html&fmt=ahah

References

  1. Breznak J. A., Costilow R. N. 1994; Physicochemical factors in growth. 137–154 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  2. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1987; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  3. Chrisostomos S., Patel B. K. C., Dwivedi P. P., Denman S. E. 1996; Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int. J. Syst. Bacteriol. 46:497–501
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826
    [Google Scholar]
  5. Engle M., Li Y., Woese C., Wiegel J. 1995; Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int. J. Syst. Bacteriol. 45:454–461
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  7. Gregersen L. 1978; Rapid method for distinction of gram negative from gram positive bacteria. J. Appl. Biochem. 5:123–126
    [Google Scholar]
  8. Harmsen H. J. M., Kengen H. M. P., Akkermans A. D. L., Stams A. J. M. 1995; Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures. Syst. Appl. Microbiol. 18:67–73
    [Google Scholar]
  9. Hobson P. N., Wallace R. J. 1982; Microbial ecology and activities in the rumen. Crit. Rev. Microbiol. 9:253–320
    [Google Scholar]
  10. Holdeman L. V., Cato E. P., Moore W. E. C. 1977; Culture methods: use of pre-reduced media. 117–149 Holdeman L. V., Cato E. P., Moore W. E. C. Anaerobic laboratory manual, 4th ed.. Anaerobe Laboratory, Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  11. Houwen F. P., Dijkkema C., Schoenmakers C. H. H., Stams A. J. M., Zehnder A. J. B. 1987; 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol. Lett. 41:269–274
    [Google Scholar]
  12. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol. 3b:117–132
    [Google Scholar]
  13. Kersters I., Maestrojuan G. M., Torck U., Vancanney M., Kersters K., Verstraete W. 1994; Isolation of Coprothermobacter proteolyticus from an anaerobic digest and further characterization of the species. Syst. Appl. Microbiol. 17:289–295
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120
    [Google Scholar]
  15. Koster I. W., Lettinga G. 1988; Anaerobic digestion at extreme ammonia concentrations. Biol. Wastes 25:51–59
    [Google Scholar]
  16. Lane D. J. 1991; 16S/23S rRNA sequencing. 115–175 Stackebrandt E., Goodfellow M. Nucleic acid techniques in bacterial systematics J. Wiley & Sons; Chichester, England:
    [Google Scholar]
  17. Lettinga G. 1995; Anaerobic digestion and wastewater treatment systems. Antonie Leeuwenhoek 67:3–28
    [Google Scholar]
  18. Logan N. A. 1994 Bacterial systematics Blackwell Scientific Publications; Oxford, England:
    [Google Scholar]
  19. McCarty P. L. 1975; Stoichiometry of biological reactions. Prog. Water Technol. 7:157–170
    [Google Scholar]
  20. McInerney M. J. 1988; Anaerobic hydrolysis and fermentation of fats and proteins. 373–415 Zehnder A. J. B. Biology of anaerobic microorganisms John Wiley & Sons; New York, N.Y.:
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  22. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. 21–41 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  23. Muxí L., Zunino L., Tarlera S., Soubes M. 1992; Characterization of a methanogenic sludge to be used as inoculum for a high-rate reactor. World J. Microbiol. Biotechnol. 8:632–634
    [Google Scholar]
  24. Orlygsson J. 1994 The role of interspecies hydrogen transfer on thermophilic protein and amino acid metabolism Swedish University of Agricultural Sciences; Uppsala, Sweden: Ph.D. thesis
    [Google Scholar]
  25. Oude Elferink S. J. W. H., Maas R. N., Harmsen H. M., Stams A. J. M. 1995; Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164:119–124
    [Google Scholar]
  26. Patel B. K. C., Monk C., Littleworth H., Morgan H. W., Daniel R. M. 1987; Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int. J. Syst. Bacteriol. 37:123–126
    [Google Scholar]
  27. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444–2448
    [Google Scholar]
  28. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol. 175:4772–4779
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  30. Schink B. 1988; Principles and limits of anaerobic degradation: environmental and technological aspects. 771–828 Zehnder A. J. B. Biology of anaerobic microorganisms John Wiley & Sons; New York, N.Y.:
    [Google Scholar]
  31. Siebert M. L., Toerien D. F. 1969; The proteolytic bacteria present in the anaerobic digestion of raw sewage sludge. Water Res. 3:241–250
    [Google Scholar]
  32. Speece R. E. 19953–6 Anaerobic biotechnology for industrial wastewaters Vanderbilt University Press; Nashville, Tenn.:
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  34. Stams A. J. M., Van Dijk J. B., Dijkema C., Plugge C. M. 1993; Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59:1114–1119
    [Google Scholar]
  35. Toda Y., Saiki T., Uozomi T., Beppu T. 1988; Isolation and characterization of a protease-producing thermophilic anaerobic bacterium, Thermobacteroides leptospartum sp. nov. Agric. Biol. Chem. 52:1339–1344
    [Google Scholar]
  36. Van De Peer Y., De Wachter R. 1993; TREECON: a software package for the construction and drawing of evolutionary trees. Comput. Appl. Biosci. 9:177–182
    [Google Scholar]
  37. Van Lier J. B. 1995 Thermophilic anaerobic wastewater treatment: temperature aspects and process stability Wageningen Agricultural University; Wageningen, The Netherlands: Ph.D. thesis
    [Google Scholar]
  38. Wiegel J. 1992; The obligate thermophilic bacteria. 105–184 Kristjansson J. K. Thermophilic bacteria CRC Press; Boca Raton, Fla.:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-651
Loading
/content/journal/ijsem/10.1099/00207713-47-3-651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error