1887

Abstract

The nearly complete sequence of the 16S rRNA gene of an extremely highly radiotolerant bacterium, (reclassified from based on chemical characteristics), was determined by PCR amplification of the genomic DNA followed by cloning of the amplified gene and sequencing by the dideoxynucleotide method. The sequence was aligned with the sequences of members of the genus and also with the sequences of representatives of the gram-positive bacteria having high G+C contents and the family (radioresistant micrococci and their relatives). The results of our phylogenetic analysis confirmed that is not a member of the group and thus supported the previous reclassification. Moreover, although it is radioresistant and has a high G+C content, is more closely related to the gram-positive bacteria with high G+C contents than to the radioresistant members of the .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-684
1997-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-684.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-684&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current protocols in molecular biology. John Wiley and Sons; New York, N.Y.:
    [Google Scholar]
  2. Bottger E. C. 1989; Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol. Lett. 65:171–176
    [Google Scholar]
  3. Brunehild S., Rajoharison A., Desvarenne S., Quinn F., Mabilat C. 1996; Comparative analysis of 16S and 23S rRNA sequences of Listeria species. Int. J. Syst. Bacteriol. 46:669–674
    [Google Scholar]
  4. Fernandez M. P., Meugnier H., Grimont P. A. D., Bandin R. 1989; Deoxyribonucleic acid relatedness among members of the genus Frankia. Int. J. Syst. Bacteriol. 39:424–429
    [Google Scholar]
  5. Felsentein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  6. Fox G. E., Stackbrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R., Magrum L., Zablen L. B., Blackmore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  7. Head I. M., Hiorns W. D., Embley T. M., McCarthy A J., Saunders J. R. 1993; The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139:1147–1153
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120
    [Google Scholar]
  9. Lane D., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequence for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  10. Laura C., Moore E., Nobre M. F., Wait R., Riley P. W., Sharp R. J., DA Costa M. S. 1996; Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int. J. Syst. Bacteriol. 46:460–465
    [Google Scholar]
  11. Nazaret S., Cournoyer B., Normand P., Simonet P. 1991; Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences. J. Bacteriol. 173:4072–4078
    [Google Scholar]
  12. Saito T., Terato H., Yamamoto O. 1994; Pigments of Rubrobacter radiotolerans. Arch. Microbiol. 162:414–421
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  14. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  16. Suzuki K., Collins M. D., Iijima E., Komagata K. 1988; Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans·. description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol. Lett. 52:33–40
    [Google Scholar]
  17. Thompson J. D., Higgins D. J., Gibson T. G. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680
    [Google Scholar]
  18. William G. W., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703
    [Google Scholar]
  19. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  20. Yamada K., Komagata K. 1972; Taxonomic studies on corneform bacteria. 4. Morphological, cultural, biochemical, and physiological characteristics. J. Gen. Appl. Microbiol. 18:399–416
    [Google Scholar]
  21. Yoshinaka T., Yano K., Yamaguchi H. 1973; Isolation of highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric. Biol. Chem. 37:2269–2275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-684
Loading
/content/journal/ijsem/10.1099/00207713-47-3-684
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error