1887

Abstract

sp. nov. is proposed based on the characteristics of six moderately halophilic, gram-positive, rod-shaped strains isolated from salterns and hypersaline soils located in different geographical areas of Spain. These strains were motile, formed endospores, were strictly aerobic, were catalase and oxidase positive, and contained peptidoglycan of the -diaminopimelic acid type in their vegetative cell walls. The DNA base compositions of these strains ranged from 36.3 to 39.5 mol%, and these organisms constitute a homology group with levels of DNA-DNA homology ranging from 73 to 100%. The 16S rRNA sequence of strain C-20Mo, which was used as the representative strain of these isolates, groups with the 16S rRNA sequences of members of the genus , and the highest level of similarity is 95.4%. The type strain is strain C-20Mo (= ATCC 700290 = DSM 11483 = CCM 4646).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-735
1997-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-735.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-735&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow A. E., Allbanks S. W., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13:202–206
    [Google Scholar]
  2. Claus D., Berkeley R. C. W. 1986 Genus Bacillus Cohn 1872. 1105–1139 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 Williams & Wilkins; Baltimore, Md.:
    [Google Scholar]
  3. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie Leeuwenhoek 36:461–474
    [Google Scholar]
  4. Fahmy F., Flossdorf J., Claus D. 1985; The DNA base composition of the strains of the genus Bacillus. Syst. Appl. Microbiol. 6:60–65
    [Google Scholar]
  5. Garcia M. T., Ventosa A., Ruiz-Berraquero F., Kocur M. 1987; Taxonomic study and amended description of Vibrio costicola. Int. J. Syst. Bacteriol. 37:251–256
    [Google Scholar]
  6. Johnson J. L. 1994 Similarity analysis of DNAs. 655–682 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.ed Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  7. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism 3 Academic Press, Inc.; New York, N.Y.:
    [Google Scholar]
  8. Kushner D. J., Kamekura M. 1988 Physiology of halophilic eubacteria. 109–140 Rodriguez-Valera F.ed Halophilic bacteria I CRC Press; Boca Raton, Fla.:
    [Google Scholar]
  9. Lawson P. A., Deutch C. E., Collins M. D. 1996; Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J. Appl. Bacteriol. 81:109–112
    [Google Scholar]
  10. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res. 24:82–85
    [Google Scholar]
  11. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  12. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  13. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int. J. Syst. Bacteriol. 45:712–716
    [Google Scholar]
  14. Nielsen P., Rainey F. A., Outtrup H., Priest F. G., Fritze D. 1994; Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol. Lett. 117:61–66
    [Google Scholar]
  15. Onishi H., Mori T., Takeuchi S., Tani K., Kobayashi T., Kamekura M. 1983; Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification, and characterization. Appl. Environ. Microbiol. 45:24–30
    [Google Scholar]
  16. Owen R. J., Hill L. R. 1979 The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. 217–296 Skinner F. A., Lovelock D. W.ed Identification methods for microbiologists, 2nd. Academic Press, Inc. (London), Ltd.; London, United Kingdom.:
    [Google Scholar]
  17. Owen R. J., Pitcher D. 1985 Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. 67–93 Goodfellow M., Minnikin D. E.ed Chemical methods in bacterial systematics Academic Press, Inc. (London), Ltd.; London, United Kingdom.:
    [Google Scholar]
  18. Paster B. J., Dewhirst F. E. 1988; Phylogeny of Campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38:56–62
    [Google Scholar]
  19. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int. J. Syst. Bacteriol. 34:287–292
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. BioL Evol. 4:406–425
    [Google Scholar]
  21. Spring S., Ludwig W., Marquez M. C., Ventosa A., Schleifer K.-H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int. J. Syst. Bacteriol. 46:492–496
    [Google Scholar]
  22. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. 1995; Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 45:682–692
    [Google Scholar]
  23. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28:226–231
    [Google Scholar]
  24. Ventosa A. 1994 Taxonomy and phylogeny of moderately halophilic bacteria. 231–241 Priest F. G., Ramos-Cormenzana A., Tindall B. J.ed Bacterial diversity and systematics Plenum Press; New York, N.Y.:
    [Google Scholar]
  25. Ventosa A., García M. T., Kamekura M., Onishi H., Ruiz-Berraquero F. 1989; Bacillus halophilus sp. nov., a moderately halophilic Bacillus species. Syst. Appl. Microbiol. 12:162–166
    [Google Scholar]
  26. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J. Gen. Microbiol. 128:1959–1968
    [Google Scholar]
  27. Ventosa A., Ramos-Cormenzana A., Kocur M. 1983; Moderately halophilic Gram-positive cocci from hypersaline environments. Syst. Appl. Microbiol. 4:564–570
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murrey R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  29. Weiss N. 1996 Personal communication
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-735
Loading
/content/journal/ijsem/10.1099/00207713-47-3-735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error