1887

Abstract

The intron-encoded enzyme I-I provides an excellent tool for rapidly examining the organization of genomes of related species of bacteria. strains belonging to serovars O1 and O139 have 9 I-I sites in their genomes, and . strains belonging to serovars non-Ol and non-O139 have 10 I-I sites in their genomes. This information can be used as a criterion to differentiate O1 strains from non-O1 and non-O139 strains. To our knowledge, intraspecies variation in the number of operons has not been reported in any other organism. Our data revealed extensive restriction fragment length polymorphism based on a comparison of the I-I digestion profiles of strains belonging to different serovars and biovars. From the analysis of partial digestion products, I-I macrorestriction maps of several classical, E1 Tor, and O139 strains were constructed. While the linkage maps are conserved within biovars, linkage maps vary substantially between biovars.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-858
1997-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-858.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-858&mimeType=html&fmt=ahah

References

  1. Albert M. J., Siddique A. K., Islam M. S., Faruque A. S. J., Ansurazzaman M., Faruque S. M., Sack R. B. 1993; Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 341:704
    [Google Scholar]
  2. Bhadra R. K., Roychoudhury S., Banerjee R. K., Kar S., Majumdar R., Sengupta S., Chatterjee S., Khetawat G., Das J. 1995; Cholera toxin (CTX) genetic element in Vibrio cholerae O139. Microbiology 141:1977–1983
    [Google Scholar]
  3. Bhadra R. K., Roychoudhury S., Das J. 1994; Vibrio cholerae O139 E1 Tor biotype. Lancet 343:728
    [Google Scholar]
  4. Krawiec S., Riley M. 1990; Organization of the bacterial genome. Microbiol. Rev 54:502–539
    [Google Scholar]
  5. Liu S.-L., Hessel A., Sanderson K. E. 1993; Genomic mapping with I-CeuI, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli and other bacteria. Proc. Natl. Acad. SciUSA 90:6874–6878
    [Google Scholar]
  6. Liu S.-L., Sanderson K. E. 1995; I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J. Bacteriol 177:3355–3357
    [Google Scholar]
  7. Liu S.-L., Sanderson K. E. 1995; Rearrangements in the genome of the bacterium Salmonella typhi. Proc. Natl. Acad. SciUSA 92:1018–1022
    [Google Scholar]
  8. Majumder R., Sengupta S., Khetawat G., Bhadra R. K., Roychoudhury S., Das J. 1996; Physical map of the genome of Vibrio cholerae 569B and localization of genetic markers. J. Bacteriol 178:1105–1112
    [Google Scholar]
  9. Marshall P., Lemieux C. 1991; Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos. Gene 104:241–245
    [Google Scholar]
  10. Morris J. G. 1990; Non-O group I Vibrio cholerae: a look at the epidemiology of an occasional pathogen. Epidemiol. Rev 12:179–191
    [Google Scholar]
  11. Nair G. B. Personal communication
    [Google Scholar]
  12. Ramamurthy T., Garg S., Sharma R., Bhattacharya S. K., Nair G. B., Shimada T., Takeda T., Karasawa T., Kurazano H., Pal A., Takeda Y. 1993; Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 341:703–704
    [Google Scholar]
  13. Roy N. K., Das G., Balganesh T. S., Dey S. N., Ghosh R. K., Das J. 1982; Enterotoxin, DNA repair and alkaline phosphatase of Vibrio cholerae before and after animal passage. J. Gen. Microbiol 128:1927–1932
    [Google Scholar]
  14. Roychoudhury S., Bhadra R. K., Das J. 1994; Genome size and restriction fragment length polymorphism analysis of Vibrio cholerae strains belonging to different serovars and biotypes. FEMS Microbiol. Lett 115:329–334
    [Google Scholar]
  15. Sahu G. K., Chowdhury R., Das J. The rpoH gene encoding σ32 homolog of Vibrio cholerae. Gene, in press;
    [Google Scholar]
  16. Shimada T., Arakawa E., Itoh K., Okitsu T., Matsushima A., Asai Y., Yamai S., Nakazato T., Nair G. B., Albert M. J., Takeda Y. 1994; Extended serotyping scheme for Vibrio cholerae. Curr. Microbiol 28:175–178
    [Google Scholar]
  17. Toda T., Itaya M. 1995; I-CeuI recognition sites in the rrn operons of the Bacillus subtilis 168 chromosome: inherent landmarks for genome analysis. Microbiology 141:1937–1945
    [Google Scholar]
  18. Waldor M., Mekalanos J. J. 1994; ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect. Immun 62:72–78
    [Google Scholar]
  19. Widom R. L., Jarvis E. D., LaFauci G., Rudner R. 1988; Instability of rRNA operons in Bacillus subtilis. J. Bacteriol 170:605–610
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-858
Loading
/content/journal/ijsem/10.1099/00207713-47-3-858
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error