1887

Abstract

A polyphasic taxonomic study was performed to characterize dissimilatory iron-reducing strains mostly isolated from Antarctic sea ice. The strains were isolated from samples of congelated (land-fast) sea ice, grease ice, and ice algal biomass collected from the coastal areas of the Vestfold Hills in eastern Antarctica (68°S 78°E). The strains were facultatively anaerobic, motile, and rod shaped, were capable of anaerobic growth either by fermentation of carbohydrates or by anaerobic respiration, and utilized a variety of electron acceptors, including nitrate, ferric compounds, and trimethylamine -oxide. A phylogenetic analysis performed with 16S rRNA sequences showed that the isolates formed two groups representing novel lineages in the genus . The first novel group included seawater-requiring, psychrophilic, chitinolytic strains which had DNA G+C contents of 48 mol%. The members of the second strain group were psychrotrophic and did not require seawater but could tolerate up to 9% NaCl. The strains of this group were also unable to degrade polysaccharides but could utilize a number of monosaccharides and disaccharides and had G+C contents of 40 to 43 mol%. The whole-cell-derived fatty acid profiles of the sea ice isolates were found to be similar to the profiles obtained for other species. The omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) (20:5ω3) was detected in all of the sea ice isolates at levels ranging from 2 to 16% of the total fatty acids. EPA was also found at high levels in (19 to 22%) and (16 to 18%) but was absent in and . On the basis of polyphasic taxonomic data, the Antarctic iron-reducing strains are placed in two new species, sp. nov. (type strain, ACAM 591) and sp. nov. (type strain, ACAM 456).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1040
1997-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1040.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1040&mimeType=html&fmt=ahah

References

  1. Baumann L., Baumann P., Mandell M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110:402–409
    [Google Scholar]
  2. Bowman J. P., McCammon S. A., Brown M. V., Nichols D. S., McMeekin T. A. 1997; Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:3068–3078
    [Google Scholar]
  3. Brink A. J., Vanstraten A., Vanrensberg A. J. 1995; Shewanella (putrefaciens) bacteremia. Clin. Infect. Dis. 20:1327–1332
    [Google Scholar]
  4. Coyne V. E., Pillidge C. J., Sledjeski D. D., Hori H., Ortiz-Conde B. A., Muir D. G., Weiner R. M., Colwell R. R. 1989; Reclassification of Alteromonas colwelliana to the genus Shewanella by DNA:DNA hybridization, serology and 5S ribosomal RNA sequence data. Syst. Appl. Microbiol. 12:275–279
    [Google Scholar]
  5. DeLong E. F., Yayanos A. A. 1986; Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl. Environ. Microbiol. 51:730–737
    [Google Scholar]
  6. DeLong E. F., Franks D. G., Yayanos A. A. 1997; Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63:2105–2108
    [Google Scholar]
  7. Deming J. W., Hada H., Colwell R. R., Luehrsen K. R., Fox G. E. 1984; The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J. Gen. Microbiol. 130:1911–1920
    [Google Scholar]
  8. Derby H. A., Hammer B. W. 1931; Bacteriology of butter. IV. Bacteriological studies on surface taint butter. Iowa Agric. Exp. Stn. Res. Bull. 145:389–416
    [Google Scholar]
  9. Dobson S. J., Colwell R. R., McMeekin T. A., Franzniann P. D. 1993; Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int. J. Syst. Bacteriol. 43:77–83
    [Google Scholar]
  10. Felsenstein J. 1993 PHYLIP (phylogeny inference package), version 3.57c. University of Washington; Seattle.:
    [Google Scholar]
  11. Franzmann P. D., Deprez P. P., McGuire A. J., McMeekin T. A., Burton H. R. 1990; The heterotrophic bacterial microbiota of Burton Lake, Antarctica. Polar Biol. 10:261–264
    [Google Scholar]
  12. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45:755–761
    [Google Scholar]
  13. Hungate R. E. 1968; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  14. Huss V. A. R., FestI H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  15. Jensen M. J., Tebo B. M., Baumann P., Mandel M., Nealson K. H. 1980; Characterization of Alteromonas hanedai (sp. nov.), a non-fermentative luminous species of marine origin. Curr. Microbiol. 3:311–315
    [Google Scholar]
  16. Kato C., Masui N., Horikoshi K. 1995; Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud. Biodivers. Conserv. 4:1–9
    [Google Scholar]
  17. Kato C., Sato T., Horikoshi K. 1996; Properties of obligately barophilic bacteria isolated from samples of deep-sea sediment from the Izu-Bonin trench. J. Mar. Biotechnol. 4:96–99
    [Google Scholar]
  18. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J. Bacteriol. 85:1183–1184
    [Google Scholar]
  19. Long H. F., Hammer B. W. 1941; Classification of organisms important in dairy products. III. Pseudomonas putrefaciens. Iowa Agric. Exp. Stn. Res. Bull. 285:176–195
    [Google Scholar]
  20. Lovely D. R. 1993; Dissimilatory metal reduction. Annu. Rev. Microbiol. 47:263–290
    [Google Scholar]
  21. Lovely D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51:683–689
    [Google Scholar]
  22. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6:171–182
    [Google Scholar]
  23. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  24. Meinkoth J., Wahl G. 1984; Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 138:267–284
    [Google Scholar]
  25. Molin G., Ternstrbm A. 1986; Phenotypically based taxonomy of psychrotrophic Pseudomonas isolated from spoiled meat, water, and soil. Int. J. Syst. Bacteriol. 36:257–274
    [Google Scholar]
  26. Moser D. P., Nealson K. H. 1996; Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62:2100–2105
    [Google Scholar]
  27. Moule A. L., Wilkinson S. G. 1987; Polar lipids, fatty acids and isoprenoid quinones of Alteromonas putrefaciens (Shewanella putrefaciens). Syst. Appl. Microbiol. 9:192–198
    [Google Scholar]
  28. Nichols D. S., Nichols P. D., McMeekin T. A. 1993; Polyunsaturated fatty acids in Antarctic bacteria. Antarct. Sci. 5:149–160
    [Google Scholar]
  29. Nichols D. S., Nichols P. D., McMeekin T. A. 1995; Ecology and physiology of psychrophilic bacteria from Antarctic saline lakes and sea ice. Sci. Prog. 78:311–347
    [Google Scholar]
  30. Nichols D. S., Russell N. J. 1996; Fatty acid adaptation in an Antarctic bacterium–changes in primer utilization. Microbiology 142:747–754
    [Google Scholar]
  31. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillaiy GC-MS of their dimethyldisulphide adducts. J. Microbiol. Methods 5:49–55
    [Google Scholar]
  32. Nozue H., Hayashi T., Hashimoto Y., Ezaki T., Hamasaki K., Ohwada K., Terawaki Y. 1992; Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of .S’, alga Simidu et al., 1990, 335. Int. J. Syst. Bacteriol. 42:628–634
    [Google Scholar]
  33. Overmann J., Pfennig N. 1989; Pelodictyonphaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch. Microbiol. 152:401–406
    [Google Scholar]
  34. Owen R. J., Legros R. M., Lapage S. P. 1978; Base composition, size, and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J. Gen. Microbiol. 104:127–138
    [Google Scholar]
  35. Picardal F., Arnold R. G., Huey B. B. 1995; Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200. Appl. Environ. Microbiol. 61:8–12
    [Google Scholar]
  36. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial growth throughout the entire biokinetic range. J. Bacteriol. 154:1222–1226
    [Google Scholar]
  37. Rosello-Mora R. A., Caccavo F. Jr., Osterlehner K., Springer N., Spring S., Schuler D., Ludwig W., Amann R., Vanncanneyt M., Schleifer K. H. 1994; Isolation and taxonomic characterization of a halotolerant, facultatively iron-reducing bacterium. Syst. Appl. Microbiol. 17:569–573
    [Google Scholar]
  38. Rossello-Mora R. A., Ludwig W., Kampfer P., Amann R., Schleifer K. H. 1995; Ferrimonas balearica gen. nov., a new marine facultative Fe(III)- reducing bacterium. Syst. Appl. Microbiol. 18:196–202
    [Google Scholar]
  39. Simidu U., Kita-Tsukamoto K., Yasumoto T., Yotsu M. 1990; Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int. J. Syst. Bacteriol. 40:331–336
    [Google Scholar]
  40. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J. Microbiol. Methods 5:139–156
    [Google Scholar]
  41. Smibert R. M., Krieg N. R. 1994 Phenotypic characterization. 611–654 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.ed Methods for general and molecular microbiology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  42. Stenstrdm I.-M., Molin G. 1990; Classification of the spoilage flora of fish, with special reference to Shewanella putrefaciens. J. Appl. Bacteriol. 68:601–618
    [Google Scholar]
  43. Weiner R. M., Coyne V. E., Brayton P., West P., Raiken S. F. 1988; Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int. J. Syst. Bacteriol. 38:240–244
    [Google Scholar]
  44. West P. A., Colwell R. R. 1984 Identification and classification of the Vibrionaceae–an overview. 285–363 Colwell R. R.ed Vibrios in the environment John Wiley & Sons; New York, N.Y.:
    [Google Scholar]
  45. Widdel F., Bak F. 1992 Gram-negative mesophilic sulfate-reducing bacteria. 3352–3378 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; Berlin, Germany.:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1040
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1040
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error