1887

Abstract

The genetic structure of isolates recovered from three species (, and ) grown in Mexico was examined. Among 41 isolates, 18 electrophoretic types (ETs) were distinguished by multilocus enzyme electrophoresis of five metabolic enzymes. The mean genetic diversity, 0.64, indicated that there was great genetic diversity in the population sampled. Most isolates (63%) fell into two closely related clusters (clusters I and II) and were the types most frequently isolated from the root nodules of and . ET cluster III isolates were frequent nodule occupants of The isolates also were assigned to three main groups by using Curie point pyrolysis mass spectrometry. In general, the multilocus enzyme electrophoretic data and pyrolysis mass spectrometric data agreed. We determined the 16S rRNA sequences of representative isolates and of USDA 6 and found that the lupine isolates were highly related to the type strain, although not all type strains (subcultures maintained in different bacterial collections) had identical small-subunit rRNA.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1086
1997-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1086.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1086&mimeType=html&fmt=ahah

References

  1. Bottomley P. J., Cheng H.-H., Strain S. R. 1994; Genetic structure and symbiotic characteristics of a Bradyrhizobium population recovered from a pasture soil. Appl. Environ. Microbiol. 60:1754–1761
    [Google Scholar]
  2. Busmann-Loock A., Dambroth M., Menge-Hartmann U. 1992; Histological observations on interspecific crosses in the genus Lupinus. Plant Breed. 109:82–85
    [Google Scholar]
  3. Chen W., Wang E., Wang S., Li Y., Chen X., Li Y. 1995; Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int. J. Syst. Bacteriol. 45:153–159
    [Google Scholar]
  4. Dupuy N., Willems A., Pot B., Dewettinck D., Vandenbruaene I., Maestrojuan G., Dreyfus B., Kersters K., Collins M. D., Gillis M. 1994; Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int. J. Syst. Bacteriol. 44:461–473
    [Google Scholar]
  5. Dupuy N. C., Dreyfus B. L. 1992; Bradyrhizobium populations occur in deep soil under the leguminous tree Acacia albida. Appl. Environ. Microbiol. 58:2415–2419
    [Google Scholar]
  6. Eardly B. D., Young J. P. W., Selander R. K. 1992; Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nif’H genes. Appl. Environ. Microbiol. 58:1809–1815
    [Google Scholar]
  7. Eardly B. D., Wang F.-S., van Berkum P. 1996; Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186:69–72
    [Google Scholar]
  8. Eckhardt M. M., Baldwin I. L., Fred E. B. 1931; Studies of the root nodule organism of lupines. J. Bacteriol. 21:273–285
    [Google Scholar]
  9. Eshuis W., Kistemaker P. G., Meuzelaar H. L. C. 1977 Some numerical aspects of reproducibility and specificity. 151–166 Jones C. E. R., Cramers C. A.ed Analytical pyrolysis Elsevier; Amsterdam, The Netherlands.:
    [Google Scholar]
  10. Felsenstein J. 1993 PHYLIP (phylogenetic inference package), version 3.5c. Department of Genetics; University of Washington, Seattle.:
    [Google Scholar]
  11. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  12. Gao J. L., Sun J. G., Li Y., Wang E. T., Chen W. X. 1994; Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, People’s Republic of China. Int. J. Syst. Bacteriol. 44:151–158
    [Google Scholar]
  13. Gault R. R., Corbin E. J., Boundy K. A., Brockwell J. 1986; Nodulation studies on legumes exotic to Australia: Lupinus and Omithopus spp. Aust. J. Exp. Agric. 26:37–48
    [Google Scholar]
  14. Goodacre R., Berkeley R. C. W. 1990; Detection of small genotypic changes in Escherichia coli by pyrolysis mass spectrometry. FEMS Microbiol. Lett. 71:133–138
    [Google Scholar]
  15. Goodacre R., Berkeley R. C. W., Beringer J. E. 1991; The use of pyrolysis mass spectrometry to detect the fimbrial adhesive antigen F41 from Escherichia coli HB101(pSLM204). J. Anal. Appl. Pyrol. 22:19–28
    [Google Scholar]
  16. Goodacre R., Hartmann A., Beringer J. E., Berkeley R. C. W. 1991; The use of pyrolysis mass spectrometry in the characterization of Rhizobium meliloti. Lett. Appl. Microbiol. 13:157–160
    [Google Scholar]
  17. Goodfellow M., Chun J., Atalan E., Sanglier J. J. 1994 Curie-point pyrolysis mass spectrometry and its application to bacterial systematics. 87–104 Priest F. G., Ramos-Cormenzana A., Tindall B.ed Bacterial systematics and diversity Plenum Press; London, United Kingdom.:
    [Google Scholar]
  18. Goodfellow M., Davenport R., Stainsby F. M., Curtis T. P. 1996; Actinomycete diversity associated with foaming in activated sludge plants. J. Ind. Microbiol. 17:268–280
    [Google Scholar]
  19. Gutteridge C. S., Vallis L., MacFie H. J. H. 1985 Numerical methods in the classification of microorganisms by pyrolysis mass spectrometry. 369–401 Goodfellow M., Jones D., Priest F. G.ed Computer-assisted bacterial systematics Academic Press; London, United Kingdom.:
    [Google Scholar]
  20. Huff S. M., Meuzelaar H. L. C., Pope D. L., Kjeldsberg C. R. 1981; Characterization of leukemic and normal white blood cells by Curie point pyrolysis mass spectrometry. 1. Numerical evaluation of the results of a pilot study. J. Anal. Appl. Pyrol. 3:95–110
    [Google Scholar]
  21. Jarvis B. D. W., Downer H. L., Young J. P. W. 1992; Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium jredii. Int. J. Syst. Bacteriol. 42:93–96
    [Google Scholar]
  22. Jarvis B. D. W., Tighe S. W. 1994; Rapid identification of Rhizobium species based on cellular fatty acid analysis. Plant Soil 161:31–41
    [Google Scholar]
  23. Jensen H. L. 1967; Mutual host plant relationships in two groups of legume root nodule bacteria (Rhizobium spp.). Arch. Microbiol. 59:174–179
    [Google Scholar]
  24. Jensen H. L., Hansen A. L. 1968; Observations on host plant reactions in root nodule bacteria of the Lotus-Anthyllis and Lupinus-Omithopus groups. Acta Agric. Scand. 18:135–142
    [Google Scholar]
  25. Jordan D. C. 1982; Transfer of Rhizobium japonicum to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32:136–139
    [Google Scholar]
  26. Jordan D. C. 1984 Genus II. Bradyrhizobium Jordan 1984, 137vp. 242 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  27. Kay H. E., Coutinho H. L. C., Fattori M., Manfio G. P., Goodacre R., Nuti M. P., Bassaglia M., Beringer J. E. 1994; The identification of Bradyrhizobium japonicum strains isolated from Italian soils. Microbiology 140:2333–2339
    [Google Scholar]
  28. Kündig C., Bec C., Hennecke H., Gottfert M. 1995; A single rRNA gene region in Bradyrhizobium japonicum. J. Bacteriol. 177:5151–5154
    [Google Scholar]
  29. Kuykendall L. D., Saxena B., Devine T. E., Udell S. E. 1992; Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol. 38:501–505
    [Google Scholar]
  30. Ludwig W., Rossello-Mora R., Aznar R., Klugbauer S., Springs S., Reetz K., Beimfohr C., Brockmann E., Kirchhof G., Dorn S., Bachleitner M., Klugbauer N., Springers N., Lane D., Nietupsky R., Weizenegger M., Schleifer K.-H. 1995; Comparative sequence analysis of 23S rRNA from Proteobacteria. Syst. Appl. Microbiol. 18:164–188
    [Google Scholar]
  31. Martinez-Romero E., Caballero-Mellado J. 1996; Rhizobium phylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci. 15:113–140
    [Google Scholar]
  32. Moreira F., Gillis M., Pot B., Kersters K., Franco A. A. 1993; Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst. Appl. Microbiol. 16:135–146
    [Google Scholar]
  33. Oyaizu H., Matsumoto S., Minamisawa K., Gamou T. 1993; Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J. Gen. Appl. Microbiol. 39:339–354
    [Google Scholar]
  34. Pudelko K., Madrzak C. J. 1996; Populations of Rhizobium and Bradyrhizobium nodulating Lupinus in Poland. 156Abstracts of Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture. 2nd European Nitrogen Fixation Conference and NATO Advanced Research WorkshopScientific Publishers OWN, Poznan, Poland
    [Google Scholar]
  35. Rzedowski J. 1979 Flora fanerogámica del Valle de México. 326–338 Compañía Editorial Continental, S. A.; México City, México.:
    [Google Scholar]
  36. Sanglier J. J., Whitehead D., Saddler G. S., Ferguson E. V., Goodfellow M. 1992; Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115:235–242
    [Google Scholar]
  37. Schlinkert-Miller M., Pepper I. L. 1988; Physiological and biochemical characteristics of a fast-growing strain of lupin rhizobia isolated from the Sonoran Desert. Soil Biol. Biochem. 20:319–322
    [Google Scholar]
  38. Scholia M. H., Moorefield J. A., Elkan G. H. 1990; DNA homology between species of rhizobia. Syst. Appl. Microbiol. 13:288–294
    [Google Scholar]
  39. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum bv. phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43:374–377
    [Google Scholar]
  40. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51:873–884
    [Google Scholar]
  41. Selander R. K., McKinney R. M., Whittam T. S., Bibb W. F., Brenner D. J., Nolte F. S., Pattison P. E. 1985; Genetic structure of populations of Legionella pneumophila. J. Bacteriol. 163:1021–1037
    [Google Scholar]
  42. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. W. H. Freeman & Co.; San Francisco, Calif:
    [Google Scholar]
  43. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  44. Sullivan J. T., Eardly B. D., van Berkum P., Ronson C. W. 1996; Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus comiculatus. Appl. Environ. Microbiol. 62:2818–2825
    [Google Scholar]
  45. Thies J. E., Ben Bohlool B., Singleton P. W. 1991; Subgroups of the cowpea miscellany: symbiotic specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum. Appl. Environ. Microbiol. 57:1540–1545
    [Google Scholar]
  46. Thomas P. M., Golly K. F., Zyskind J. W., Virginia R. A. 1994; Variation of clonal, mesquite-associated rhizobial and bradyrhizobial populations from surface and deep soils by symbiotic gene region restriction fragment length polymorphism and plasmid profile analysis. Appl. Environ. Microbiol. 60:1146–1153
    [Google Scholar]
  47. van Berkum P. 1990; Evidence for a third uptake hydrogenase phenotype among the soybean bradyrhizobia. Appl. Environ. Microbiol. 56:3835–3841
    [Google Scholar]
  48. van Berkum P., Beyene D., Eardly B. D. 1996; Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int. J. Syst. Bacteriol. 46:240–244
    [Google Scholar]
  49. Vanrossum D., Schuurmans F. P., Gillis M., Muyotcha A., Vanverseveld H. W., Stouthamer A. H., Boogerd F. C. 1995; Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl. Environ. Microbiol. 61:1599–1609
    [Google Scholar]
  50. Vincent J. M. 1970 A manual for the practical study of root nodule bacteria. International Biological Programme Handbook no. 15164 Blackwells Scientific Publications, Ltd.; Oxford, United Kingdom:
    [Google Scholar]
  51. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703
    [Google Scholar]
  52. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA sequences. Int. J. Syst. Bacteriol. 43:305–313
    [Google Scholar]
  53. Windig W., Kistemaker P. G., Haverkamp J. 1983; Interpretation of a set of pyrolysis mass spectra by discriminant analysis and graphical rotation. Anal. Chern. 55:387–391
    [Google Scholar]
  54. Winstanley T. G., Magee J. T., Limb D. I., Hindmarch J. M., Spencer R. C., Whiley R. A., Beighton D., Hardie J. M. 1992; A taxonomic study of the “Streptococcus milleri group” using conventional phenotypic tests and pyrolysis mass spectrometry. J. Med. Microbiol. 36:149–155
    [Google Scholar]
  55. Wong F. Y. K., Stackebrandt E., Ladha J. K., Fleischman D. E., Date R. A., Fuerst J. A. 1994; Phylogenetic analysis of Bradyrhizobium japonicum and photosynthetic stem-nodulating bacteria from Aeschynomene species grown in separated geographical regions. Appl. Environ. Microbiol. 60:940–946
    [Google Scholar]
  56. Xu L. M., Ge C., Cui Z., Li J., Fan H. 1995; Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol. 45:706–711
    [Google Scholar]
  57. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107:115–120
    [Google Scholar]
  58. Young J. P. W., Haukka K. E. 1996; Diversity and phylogeny of rhizobia. New Phytol. 133:87–94
    [Google Scholar]
  59. Young J. P. W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototrophic Rhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173:2271–2277
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1086
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1086
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error