1887

Abstract

Almost complete 16S ribosomal DNA (rDNA) sequences were determined for the type strains of nine species belonging to the genus and for seven strains described as strains of this genus. The sequences were compared with previously published 16S rDNA and rRNA sequences of the type strains of the other species of the genus. The majority of the species form a phylogenetically coherent cluster within the subphylum of gram-positive bacteria. The cluster consists of phylogenetically well-separated lineages containing (i) , and , (ii) , and , (iii) , and , (iv) and , and (v) . Some as-yet-undescribed strains are phylogenetically well-separated from strains of the described species. shares extremely high 16S rDNA similarity with certain species ( and ) and is most likely a misidentified species. represents a new genus which branches most closely to the genus . The name gen. nov., comb. nov., is proposed for this taxon.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1134
1997-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1134.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1134&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  2. Campbell L. L., Postgate J. R. 1965; Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29:359–363
    [Google Scholar]
  3. Campbell L. L., Singleton R. Jr. 1986 Genus Desulfotomaculum Campbell and Postgate 1965, 361. 1200–1202 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium ·, proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826
    [Google Scholar]
  5. Cord-Ruwisch R., Garcia J. L. 1985; Isolation and characterization of an anaerobic benzoate-degrading spore-forming sulfate-reducing bacterium, Desulfotomaculum sapomandens sp. nov. FEMS Microbiol. Lett. 29:325–330
    [Google Scholar]
  6. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Leeuwenhoek J. Microbiol. Serol. 54:165–178
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridisation from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  8. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  9. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171:6689–6695
    [Google Scholar]
  10. Devereux R., Stahl D. A. 1993 Phylogeny of sulfate-reducing bacteria and a perspective for analyzing their natural communities. 131–160 Odom J. M., Singleton R. Jr.ed The sulfate-reducing bacteria: contemporary perspectives Springer-Verlag; New York, N.Y.:
    [Google Scholar]
  11. DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen 1993 DSM catalogue of strains, 5th. DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen; Braunschweig, Germany.:
    [Google Scholar]
  12. DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen 1996 DSM catalogue of strains, supplement. DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen; Braunschweig, Germany.:
    [Google Scholar]
  13. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  14. Fardeau M.-L., Ollivier B., Patel B. K. C., Dwivedi P., Ragot M., Garcia J.-L. 1995; Isolation and characterization of a thermophilic sulfatereducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int. J. Syst. Bacteriol. 45:218–221
    [Google Scholar]
  15. Felsenstein J. 1993 PHYLIP (phylogenetic inference package), version 3.5.1. Department of Genetics; University of Washington, Seattle.:
    [Google Scholar]
  16. Fowler V. J., Widdel F., Pfennig N., Woese C. R., Stackebrandt E. 1986; Phylogenetic relationships of sulfate- and sulfur-reducing bacteria. Syst. Appl. Microbiol. 8:32–41
    [Google Scholar]
  17. Gogotova G. I., Vainshtein M. B. 1983; The sporogenous sulfate reducing bacterium Desulfotomaculum guttoideum sp. nov. Mikrobiologiya 52:789–793
    [Google Scholar]
  18. Hagenauer A., Hippe H., Rainey F. A. 1997; Desulfotomaculum aeronauticum sp. nov., a sporeforming, thiosulfate-reducing bacterium from corroded aluminum alloy in an aircraft. Syst. Appl. Microbiol. 20:65–71
    [Google Scholar]
  19. Hippe N., Vainshtein M., Kroppenstedt R. M. 1995; Fatty acid composition and taxonomic significance in the genus Desulfotomaculum, poster no. PB082. Spring Meeting of the Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM)Stuttgart, Germany
    [Google Scholar]
  20. Huber R., Rossnagel P., Woese C. R., Rachel R., Langworthy T. A., Stetter K. O. 1996; Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov., sp. nov. Syst. Appl. Microbiol. 19:40–49
    [Google Scholar]
  21. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  22. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  24. Klemps R., Cypionka H., Widdel F., Pfennig N. 1985; Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch. Microbiol. 143:203–208
    [Google Scholar]
  25. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the great Artesian basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  26. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res. 22:3485–3487
    [Google Scholar]
  27. Min H., Zinder S. H. 1990; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermoacetoxidans sp. nov. Arch. Microbiol. 153:399–404
    [Google Scholar]
  28. Nazina T. N., Ivanova A. E., Kanchaveli L. P., Rozanova E. P. 1988; Desulfotomaculum kuznetsovii sp. nov., a new spore-forming, thermophilic, methylotrophic, sulfate-reducing bacterium. Mikrobiologija 57:659–663
    [Google Scholar]
  29. Nazina T. N., Pivovarova T. A. 1979; Submicroscopic organization and spore formation in Desulfotomaculum nigrificans. Mikrobiologija 48:241–246
    [Google Scholar]
  30. Nazina T. N., Poltaraus A. B., Rozanova E. P. 1987; Estimation of genetic relationship between rod-shaped asporogenic sulfate-reducing bacteria. Mikrobiologija 56:669–672
    [Google Scholar]
  31. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocistemum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46:397–402
    [Google Scholar]
  32. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol. 175:4772–4779
    [Google Scholar]
  33. Rainey F. A., Ward-Rainey N., Janssen P., Hippe H., Stackebrandt E. 1996; Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology (Reading) 142:2087–2095
    [Google Scholar]
  34. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol. 46:1088–1092
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  36. Sleytr R., Adam H., Klaushofer H. 1969; Die Feinstruktur der Zell- wand und Cytoplasmamembran von Clostridium nigrificans, dargestellt mit Hilfe der Gefrieratz- und Ultradunnschnittechnik. Arch. MikrobioL 66:40–58
    [Google Scholar]
  37. Sproer C., Ward-Rainey N., Rainey F. A., Stackebrandt E. Unpublished data
  38. Stackebrandt E., Stahl D. A., Devereux R. 1995 Taxonomic relationships. 49–87 Barton L. L.ed Sulfate-reducing bacteria Plenum Press; New York, N.Y.:
    [Google Scholar]
  39. Strunk O., Ludwig W. 1995 ARB–a software environment for sequence data. Department of Microbiology, Technical University of Munich; Munich, Germany.:
    [Google Scholar]
  40. Tanimoto Y., Bak F. 1994; Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria. AppL Environ. Microbiol. 60:2450–2455
    [Google Scholar]
  41. Tasaki M., Kamagata Y., Nakamura K., Mikami E. 1991; Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch. Microbiol. 155:348–352
    [Google Scholar]
  42. Utkin I., Woese C., Wiegel J. 1994; Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. Bacteriol. 44:612–619
    [Google Scholar]
  43. Vainshtein M., Gogotova G., Hippe H. 1994 A sulfate-reducing bacterium from the permafrost. 68–74 Gilichinsky D.ed Viable microorganisms in permafrost Russian Academy of Science Pushchino Research Center; Pushchino, Russia.:
    [Google Scholar]
  44. Widdel F., Hansen T. A. 1992 The dissimilatory sulfate- and sulfur- reducing bacteria. 583–624 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes Springer-Verlag; New York, N.Y.:
    [Google Scholar]
  45. Widdel F., Pfennig N. 1977; A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112:119–122
    [Google Scholar]
  46. Widdel F., Pfennig N. 1984 Dissimilatory sulfate- or sulfur-reducing bacteria. 663–679 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  47. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47:621–669
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1134
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error