1887

Abstract

An intracellular symbiotic bacterium was isolated from the hemolymph of and cultured in an cell line. 16S ribosomal DNA sequence analysis revealed that the bacterium was a member of the γ-3 subgroup of the class , having 96.2% sequence identity with the most closely related bacterium, , the causative agent of the son-killer trait in the parasitoid wasp . These bacteria share morphological features and a common tissue distribution and transmission mode. The symbiont branch represents a lineage of insect symbionts which may be capable of horizontal transmission between phylogenetically distant host insects. We propose that the intracellular symbiont from be classified as The bacterium found in the hemocytes of is designated the type strain of this species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1140
1997-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1140.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1140&mimeType=html&fmt=ahah

References

  1. Aksoy S. 1995; Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. Int. J. Syst. Bacteriol. 45:848–851
    [Google Scholar]
  2. Aldhous P. 1993; Bacteria may provide access to the tsetse fly. Science 261:548
    [Google Scholar]
  3. Baines S. 1956; The role of the symbiotic bacteria in the nutrition of Rhodnius prolixus (Hemiptera). J. Exp. Biol. 33:533–541
    [Google Scholar]
  4. Beard C. B., Mason P., Aksoy S., Tesh R. B., Richards F. F. 1992; Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. Am. J. Trop. Med. Hyg. 46:195–200
    [Google Scholar]
  5. Beard C. B., O’Neill S. L., Tesh R. B., Richards F. F., Aksoy S. 1993; Modification of arthropod vector competence via symbiotic bacteria. Parasitol. Today 9:179–183
    [Google Scholar]
  6. Beard C. B., O’Neill S. L., Mason P., Mandelco L., Woese C. R., Tesh R. B., Richards F. F., Aksoy S. 1993; Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Mol. Biol. 1:123–131
    [Google Scholar]
  7. Bequaert J. 1912; L’instinct maternal chez Rhinocoris albopictus. Sign. Rev. Zool. Bot. Afr. 1:193–196
    [Google Scholar]
  8. Buchner P. 1965 Endosymbiosis of animals with plant microorganisms. Interscience; New York, N.Y.:
    [Google Scholar]
  9. Campbell B. C., Bragg T. S., Turner C. E. 1992; Phylogeny of symbiotic bacteria of four weevil species (Coleoptera: Curculionidae) based on analysis of 16S ribosomal DNA. Insect Biochem. Mol. Biol. 22:415–421
    [Google Scholar]
  10. Campbell B. C., Steffen-Campbell J. D., Werren J. H. 1993; Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Mol. Biol. 2:225–237
    [Google Scholar]
  11. Clark A., Baumann L., Munson M. A, Baumann P., Campbell B. C., Duffus J. E., Osborne L. S., Moran N. A. 1992; The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr. Microbiol. 25:119–123
    [Google Scholar]
  12. Darling D. C., Werren J. H. 1989; Biosystematics of Nasonia (Hymenoptera: Pteromalidae): two new species reared from birds’ nests in North America. Ann. Entomol. Soc. Am. 83:352–370
    [Google Scholar]
  13. Douglas A E. 1989; Mycetocyte symbiosis in insects. Biol. Rev. 64:409–434
    [Google Scholar]
  14. Felsenstein J. 1995 PHYLIP (phylogeny inference package), version 3.57c. Department of Genetics; University of Washington, Seattle.:
    [Google Scholar]
  15. Gherna R. L., Werren J. H., Weisburg W., Cote R., Woese C. R., Mandelco L., Brenner D. 1991; Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int. J. Syst. Bacteriol. 41:563–565
    [Google Scholar]
  16. Gimenez D. 1964; Staining rickettsiae in yolk-sac cultures. Stain Technol. 39:135–140
    [Google Scholar]
  17. Goodchild A. J. P. 1955; The bacteria associated with Triatoma infestans and some other species of Reduviidae. Parasitology 45:441–448
    [Google Scholar]
  18. Hill P. 1975 Ph.D. thesis Edinburgh University; Edinburgh, United Kingdom:
  19. Huger A. M., Skinner S. W., Werren J. H. 1985; Bacterial infection associated with the son-killer trait in the parasitoid wasp Nasonia (= Mor-moniella) vitripennis (Hymenoptera: Pteromalidae). J. Invertebr. Pathol. 46:272–280
    [Google Scholar]
  20. Hypsa V. 1993; Endocytobionts of Triatoma infestans: distribution and transmission. J. Invertebr. Pathol. 61:32–38
    [Google Scholar]
  21. Hypsa V., Grubhoffer L. Two hemocyte populations in Triatoma infestans: ultrastructure and lectin-binding characteristics. Folia Parasitol. (Ceske Budejovice) 44:62–70
    [Google Scholar]
  22. Igarashi A. 1978; Isolation of Singh’s Aedes albopictus cell clone sensitive to dengue and chikungunya viruses. J. Gen. Virol. 40:531
    [Google Scholar]
  23. Lake P., Friend W. G. 1968; The use of artificial diets to determine some of the effects of Nocardia rhodnii on the development of Rhodnius prolixus. J. Insect Physiol. 14:543–562
    [Google Scholar]
  24. Loh J. T., Ho S. C., de Feijter A. W., Wang J. L., Schindler M. 1993; Carbohydrate binding activities of Bradyrhizobium japonicum: unipolar localisation of the lectin BJ38 on the bacterial cell surface. Proc. Natl. Acad. Sci. USA 90:3033–3037
    [Google Scholar]
  25. Louis C., Drif L., Vago C. 1986; Mise en évidence et étude ultrastructurale de procaryotes de type rickettsien dans les glandes salivaires des Triatomidae (Heteroptera). Ann. Soc. Entomol. Fr. 22:153–162
    [Google Scholar]
  26. Madiak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res. 22:3485–3487
    [Google Scholar]
  27. Maudlin I., Welburn S. C. 1988; Tsetse immunity and the transmission of trypanosomiasis. Parasitol. Today 4:109–111
    [Google Scholar]
  28. Moran N. A., Munson M. A., Baumann P., Ishikawa H. 1995; A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. Lond. B 253:167–171
    [Google Scholar]
  29. Munson M. A., Baumann P., Kinsey M. B. 1991; Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int. J. Syst. Bacteriol. 41:566–568
    [Google Scholar]
  30. O’Neill S. L., Giordano R., Colbert A. M. E., Karr L., Robertson H. M. 1992; 16S rDNA phylogenetic analysis of bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. USA 89:2699–2702
    [Google Scholar]
  31. O’Neill S. L., Gooding R. H., Aksoy S. 1993; Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med. Vet. Entomol. 7:377–383
    [Google Scholar]
  32. Pinnock D. E., Hess R. T. 1974; The occurence of intracellular rickettsia-like organisms in the tsetse flies, Glossina morsitans, G. fuscipes, G. brevipalpis and G. pallidipes. Acta Trop. 31:70–79
    [Google Scholar]
  33. Skinner S. W. 1983 Ph.D. thesis University of Utah; Salt Lake City:
  34. Unterman B. M., Baumann P., McLean D. L. 1989; Pea aphid symbiont relationships established by analysis of 16S rRNAs. J. Bacteriol. 171:2970–2974
    [Google Scholar]
  35. Welburn S. C. 1991 Ph.D. thesis University of Bristol; Bristol, United Kingdom:
  36. Welburn S. C., Maudlin I. 1991; Rickettsia-like organisms, puparial temperature and susceptibility to trypanosome infection in Glossina morsitans. Parasitology 102:201–206
    [Google Scholar]
  37. Welburn S. C., Dale C. 1997 Isolation and culture of tsetse secondary endosymbionts. 547–554 Crampton J. M., Beard C. B., Louis C.ed The molecular biology of insect disease vectors Chapman and Hall; London, United Kingdom.:
    [Google Scholar]
  38. Welburn S. C., Maudlin I., Ellis D. S. 1987; In vitro cultivation of rickettsia-like organisms from Glossina spp. Ann. Trop. Med. Parasitol. 81:331–335
    [Google Scholar]
  39. Werren J. H., Skinner S. W., Huger A. M. 1986; Male-killing bacteria in a parasitic wasp. Science 231:990–992
    [Google Scholar]
  40. Werren J. H., Zhang W., Guo L. R. 1995; Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc. R. Soc. Lond. B 261:55–71
    [Google Scholar]
  41. Wigglesworth V. B. 1936; Symbiotic bacteria in a blood-sucking insect, Rhodniusprolixus Stahl (Hemiptera, Triatominae). Parasitology 28:284–289
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1140
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1140
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error