1887

Abstract

The isolation of a new motile, gram-negative, heterotrophic, sulfur-reducing, microaerophilic, vibrioid bacterium, strain F1F6, from oxidized marine surface sediment (Arcachon Bay, French Atlantic coast) is described. Hydrogen (with acetate as the carbon source), formate (with acetate as the carbon source), pyruvate, lactate, α-ketoglutarate, glutarate, glutamate, and yeast extract supported growth with elemental sulfur under anaerobic conditions. Apart from H and formate, the oxidation of the substrates was incomplete. Microaerophilic growth was supported with hydrogen (acetate as the carbon source), formate (acetate as the carbon source), acetate, propionate, pyruvate, lactate, α-ketoglutarate, glutamate, yeast extract, fumarate, succinate, malate, citrate, and alanine. The isolate grew fermentatively with fumarate, succinate being the only organic product. Elemental sulfur and oxygen were the only electron acceptors used. Vitamins or amino acids were not required. The isolate was oxidase, catalase, and urease positive. Comparative 16S rDNA sequence analysis revealed a tight cluster consisting of the validly described species and the strains SES-3 and CCUG 13942 as the closest relatives of strain F1F6 (level of sequence similarity, 91.7 to 92.4%). Together with strain F1F6, these organisms form a novel lineage within the epsilon subclass of proteobacteria clearly separated from the described species of the genera , and Due to the phenotypic characteristics shared by strain F1F6 and and considering their phylogenetic relationship, we propose the inclusion of strain F1F6 in the genus , namely, as sp. nov. Based on the results of this study, an emended description of the genus is given.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1212
1997-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1212.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1212&mimeType=html&fmt=ahah

References

  1. Biebl H., Pfennig N. 1977; Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 112:115–117
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A., Solokova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov., a new thermophilic sulfur-reducing eubacterium. Arch. Microbiol. 153:151–155
    [Google Scholar]
  3. Brondz I., Olsen I. 1991; Multivariate analyses of cellular fatty acids in Bacteroides, Prevotella, Porphyromonas, Wolinella, and Campylobacter spp. J. Clin. Microbiol. 29:183–189
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  5. Caccavaco F. Jr., Lonegran D. J., Lovley D. R., Davies M., Stolz J. F., McInerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60:3752–3759
    [Google Scholar]
  6. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14:454–458
    [Google Scholar]
  7. Collins M. D., Langworthy T. A. 1983; Respiratory quinone composition of some acidophilic bacteria. Syst. Appl. Microbiol. 4:295–304
    [Google Scholar]
  8. Collins M. D., Costas M., Owen R. J. 1984; Isoprenoid quinone composition of representatives of the genus Campylobacter. Arch. Microbiol. 137:168–170
    [Google Scholar]
  9. Collins M. D., Widdel F. 1986; Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst. Appl. Microbiol. 8:8–18
    [Google Scholar]
  10. Felsenstein J. 1993 PHYLIP (phylogeny inference package), version 3.5c. Department of Genetics; University of Washington, Seattle.:
    [Google Scholar]
  11. Finster K., Bak F. 1993; Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubacteria. Appl. Environ. Microbiol. 59:1452–1460
    [Google Scholar]
  12. Finster K., Liesack W., Tindall B. J. 1997; Desulfospira joergensenii, gen. nov., sp. nov., a new sulfate-reducing bacterium isolated from marine surface sediment. Syst. Appl. Microbiol. 20:201–208
    [Google Scholar]
  13. Friedrich M., Springer N., Ludwig W., Schink B. 1996; Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int. J. Syst. Bacteriol. 46:1065–1069
    [Google Scholar]
  14. Goodwin C. S., McConnell W., McCulloch R. K., McCullough C., Hill R., Bronsdon M. A., Kasper G. 1989; Cellular fatty acid composition of Campylobacter pylori from primates and ferrets compared with those of other Campylobacters. J. Clin. Microbiol. 27:938–943
    [Google Scholar]
  15. Huber R., Stetter K. O. 1992 The order Thermoproteales. 677–683 Balows A., Triiper G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. 1 Springer; New York, N.Y.:
    [Google Scholar]
  16. International Committee on Systematic Bacteriology 1993; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 44. Int. J. Syst. Bacteriol. 43:188–189
    [Google Scholar]
  17. Isaksen M., Finster K. 1992; Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar. Ecol. Prog. Ser. 137:187–194
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism 3 Academic Press, Inc.; New York, N.Y.:
    [Google Scholar]
  19. Laanbroek H. J., Lambers J. T., deVos W. M., Veldkamp H. 1977; L-Aspartate fermentation by a free-living Campylobacter species. Arch. Microbiol. 117:109–114
    [Google Scholar]
  20. Lambert M. A., Patton C. M., Barrett T. J., Moss C. W. 1987; Differentiation of Campylobacter and Campylobacter-Wkt organisms by cellular fatty acid composition. J. Clin. Microbiol. 25:706–713
    [Google Scholar]
  21. Laverman A. M., Blum J. S., Schaefer J. K., Phillips E. J. P., Lovley D. R., Oremland R. S. 1995; Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61:3556–3561
    [Google Scholar]
  22. Liesack W., Finster K. 1994; Phylogenetic analysis of five strains of gram-negative, obligate anaerobic, sulfur-reducing bacteria and the description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int. J. Syst. Bacteriol. 44:753–758
    [Google Scholar]
  23. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J. P., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178:2402–2408
    [Google Scholar]
  24. Lovley D. R., Phillips E. J. P., Lonergan D. J., Widman P. K. 1995; Fe(IIl) and S° reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61:2132–2138
    [Google Scholar]
  25. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The ribosomal database project (RDP). Nucleic Acids Res. 24:82–85
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  27. Moser D. P., Nealson K. H. 1996; Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62:2100–2105
    [Google Scholar]
  28. Moss C. W., Lambert-Fair M. A, Nicholson M. A., Guerrant G. O. 1990; Isoprenoid quinones of Campylobacter cryaerophila, C. cinaedi, C. fennelliae, C. hyointestinalis, C. pylori, and “C. upsaliensis. “ J. Clin. Microbiol. 28:395–397
    [Google Scholar]
  29. Moule A. L., Wilkinson S. G. 1987; Polar lipids, fatty acids, and isoprenoid quinones of Alteromonasputrefaciens (Shewanella putrefaciens). Syst. Appl. Microbiol. 9:192–198
    [Google Scholar]
  30. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as sole electron acceptor. Science 240:1319–1321
    [Google Scholar]
  31. Oremland R. S., Blum J. S., Culberton C. W., Visscher P. T., Miller L. G., Dowdle P., Strohmaier F. E. 1994; Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60:3011–3019
    [Google Scholar]
  32. Pfennig N. 1978; Rhodocyclus purpureas, gen. nov. and sp. nov., a ringshaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28:283–288
    [Google Scholar]
  33. Pfennig N., Biebl H. 1976; Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110:3–12
    [Google Scholar]
  34. Rainey F. A., Toalster R., Stackebrandt E. 1993; Desulfurella acetivorans, a thermophilic, acetate-oxidizing and sulfur-reducing organism, represents a distinct lineage within the Proteobacteria. Syst. Appl. Microbiol. 16:373–379
    [Google Scholar]
  35. Rodriguez-Tome P., Stoehr P. J., Cameron G. N., Flores T. P. 1996; The European Bioinformatics Institute (EBI) databases. Nucleic Acids Res. 24:6–12
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  37. Schumacher W., Kroneck P. M. H., Pfennig N. 1992; Comparative systematic study of “spirillum” 5175, Campylobacter and Wolinella species. Description of “spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., sp. nov. Arch. Microbiol. 158:287–293
    [Google Scholar]
  38. Segerer A. H., Stetter K. O. 1992 The order Sulfolobales. 684–701 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. 1 Springer; New York, N.Y.:
    [Google Scholar]
  39. Simbert R. M. 1984 Genus Campylobacter Sebald and Veron 1963, 907AL. 111–118 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  40. Stackebrandt E., Liesack W. 1993 Nucleic acid and identification. 151–194 Goodfellow M., O’Donnell A. G.ed The new bacterial systematics Academic Press; London, England.:
    [Google Scholar]
  41. Stolz J. F., Gugliuzza T., Blum J. S., Oremland R., Murillo F. M. 1997; Differential cytochrome content and reductase activity in Geospirillum barnesii strain SES3. Arch. Microbiol. 167:1–5
    [Google Scholar]
  42. Strunk O., Ludwig W. 1996 ARB-Software Environment for Sequence Data. Technische Universität München; Munich, Germany.:
    [Google Scholar]
  43. Tamaoka J., Komagato K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  44. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13:128–130
    [Google Scholar]
  45. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66:199–202
    [Google Scholar]
  46. Tindall B. J Unpublished data
  47. Van de Peer Y., Nicolai S., De Rijk P., De Wachter R. 1996; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 24:86–91
    [Google Scholar]
  48. Widdel F., Pfennig N. 1992 The genus Desulfuromonas and other gram-negative sulfur-reducing eubacteria. 3379–3389 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. 4 Springer; New York, N.Y.:
    [Google Scholar]
  49. Wolfe R. S., Pfennig N. 1977; Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33:427–433
    [Google Scholar]
  50. Wolin M. J., Wolin E. A., Jacobs N. J. 1961; Cytochrome-producing anaerobe vibrio, Vibrio succinogenes sp. nov. J. Bacteriol. 81:911–917
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1212
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1212
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error