1887

Abstract

To clarify the taxonomic status of two recently described genomic groups, groups VS116 and M19, three group VS116 strains and eight group M19 strains isolated from ticks in Switzerland, The Netherlands, and the United Kingdom were characterized. PCR-restriction fragment length polymorphism (RFLP) analysis of the 5S-23S intergenic spacer amplicon, rRNA gene restriction analysis, 16S rRNA gene sequence analysis, randomly amplified polymorphic DNA (RAPD) fingerprinting, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblotting with monoclonal antibodies were used for genetic and phenotypic analysis. The PCR-RFLP and RAPD patterns of three group VS116 strains and eight group M19 strains were identical but differed from those of sensu stricto, , and DNAs from all group VS116 and M19 strains yielded three fragments (6.9, 3.2, and 1.4 kb) and four fragments (2.1, 1.2, 0.8, and 0.6 kb) after digestion with and dlll, respectively, hybridizing with an 16S+23S cDNA probe. The SDS-PAGE protein profiles of group VS116 and M19 strains were heterogeneous. Phylogenetic analysis of the partial 16S rRNA gene sequences showed that group VS116 and M19 spirochetes were members of a species distinct from previously characterized members of the genus Based on our present study and data from previous DNA-DNA hybridizations, a new species, sp. nov., in the complex, is proposed. Strain VS116 is the type strain of this new species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-926
1997-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-926.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-926&mimeType=html&fmt=ahah

References

  1. Akopyanz N., Bukanov N. O., Westblom T. U., Kresovich S., Berg D. E. 1992; A diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20:5137–5142
    [Google Scholar]
  2. Anda P., Sanchez-Yebra W., del Mar Vitutia M., Pastrana E. Perez, Rodriguez I., Miller N. S., Backenson P. B., Benach J. L. 1996; A new Borrelia species isolate from patients with relapsing fever in Spain. Lancet 348:162–165
    [Google Scholar]
  3. Balmelli T., Piffaretti J.-C. 1996; Analysis of the genetic polymorphism of Borrelia burgdorferi sensu lato by multilocus enzyme electrophoresis. Int. J. Syst. Bacteriol. 46:167–172
    [Google Scholar]
  4. Baranton G., Postic D., Girons I. Saint, Boerlin P., Piffaretti J.-C., Assous M., Grimont P. A. D. 1992; Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int. J. Syst. Bacteriol. 42:378–383
    [Google Scholar]
  5. Barbour A. G., Heiland R. A., Howe T. R. 1985; Heterogeneity of major proteins in Lyme disease borreliae: a molecular analysis of North America and European isolates. J. Infect. Dis. 152:478–484
    [Google Scholar]
  6. Barbour A. G., Hayes S. F. 1986; Biology of Borrelia species. Microbiol. Rev. 50:381–400
    [Google Scholar]
  7. Barbour A. G., Maupin G. O., Teltow G. J., Carter C. J., Piesman J. 1996; Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. J. Infect. Dis. 173:403–409
    [Google Scholar]
  8. Bennett B. E. 1995; Tick and Lyme disease. Adv. Parasitol. 36:344–405
    [Google Scholar]
  9. Canica M. M., Nato F., du Merle L., Mazie J. C., Baranton G., Postic D. 1993; Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestation of lyme borreliosis. Scand. J. Infect. Dis. 25:441–448
    [Google Scholar]
  10. Fahrer H., van der Linden S. M., Sauvain M. J., Gern L., Zhioua E., Aeschlimann A. 1991; The prevalence and incidence of clinical and asymptomatic Lyme borreliosis in a population at risk. J. Infect. Dis. 163:305–310
    [Google Scholar]
  11. Filipuzzi-Jenny E., Blot M., Schmid-Berger N., Meister-Turner J., Meyer J. 1993; Genetic diversity among Borrelia burgdorferi isolates: more than three genospecies?. Res. Microbiol. 144:295–304
    [Google Scholar]
  12. Fukunaga M., Takahashi Y., Tsuruta Y., Matsushita O., Ralph D., McClelland M., Nakao M. 1995; Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the Ixodes persulcatus, the vector for Lyme disease in Japan. Int. J. Syst. Bacteriol. 45:804–810
    [Google Scholar]
  13. Fukunaga M., Okada K., Nakao M., Konishi T., Sato Y. 1996; Phylogenetic analysis of Borrelia species based on flagellin gene sequences and its application for molecular typing of Lyme disease borreliae. Int. J. Syst. Bacteriol. 46:898–905
    [Google Scholar]
  14. Fukunaga M., Hamase A., Okada K., Inoue H., Tsuruta Y., Miyamoto K., Nakao M. 1996; Characterization of spirochetes isolated from ticks (Ixodes tanuki, Ixodes turdus, and Ixodes columnae) and comparison of the sequences with those of Borrelia burgdorferi sensu lato strains. Appl. Environ. Microbiol. 62:2338–2344
    [Google Scholar]
  15. Fukunaga M., Hamase A., Okada K., Nakao M. 1996; Borrelia tanuki sp. nov. and Borrelia turdae sp. nov. found from Ixodes ticks in Japan: rapid species identification by 16S rRNA gene-targeted PCR analysis. Microbiol. Immunol. 40:877–881
    [Google Scholar]
  16. Gazumyan A., Schwärt J. J., Liveris D., Schwartz I. 1994; Sequence analysis of the ribosomal RNA Operon of the Lyme disease spirochete, Borrelia burgdorferi. Gene 146:57–65
    [Google Scholar]
  17. Humair P. F., Postic D., Wallich R., Gern L. An avian reservoir (Turdus merula) of the Lyme disease spirochetes Submitted for publication;
    [Google Scholar]
  18. Johnson R. C., Schmid G. P., Hyde F. W., Steigerwalt A. G., Brenner D. J. 1984; Borrelia burgdorferi sp. nov.: etiological agent of Lyme disease. Int. J. Syst. Bacteriol. 34:496–497
    [Google Scholar]
  19. Kawabata H., Masuzawa T., Yanagihara Y. 1993; Genomic analysis of Borrelia japonica sp. nov. isolated from Ixodes ovatus in Japan. Microbiol. Immunol. 37:843–848
    [Google Scholar]
  20. Kirstein F., Rijpkema S., Molkenboer M., Gray J. S. 1997; The distribution and prevalence of B. burgdorferi genomospecies in Ixodes ricinus ticks in Ireland. Eur. J. Epidemiol. 13:67–72
    [Google Scholar]
  21. Kramer M. D., Schaible U. E., Wallich R., Moter S. E., Petzoldt D., Simon M. M. 1990; Characterization of Borrelia burgdorferi associated antigens by monoclonal antibodies. Immunobiology 181:357–366
    [Google Scholar]
  22. Kumar S., Tamura K., Masatoshi N. 1993 MEGA: molecular evolutionary genetics analysis, version 1.01 The Pennsylvania State University; University Park:
    [Google Scholar]
  23. Le Fleche A., Postic D., Girardet K., Peter O., Baranton G. 1997; Characterization of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. Int. J. Syst. Bacteriol. 47:921–925
    [Google Scholar]
  24. Livesley M. A., Thompson I. P., Rainey P. B., Nuttall P. A. 1995; Comparison of Borrelia isolated from UK foci of Lyme disease. FEMS Microbiol. Lett. 130:151–158
    [Google Scholar]
  25. Marconi R. T., Garon C. F. 1992; Development of polymerase chain reaction sets for diagnosis of Lyme disease and for species-specific identification of Lyme disease isolates by 16S rRNA signature nucleotide analysis. J. Clin. Microbiol. 30:2830–2834
    [Google Scholar]
  26. Marconi R. T., Liveris D., Schwartz I. 1995; Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analysis of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. J. Clin. Microbiol. 33:2427–2434
    [Google Scholar]
  27. Masuzawa T., Komikado T., Iwaki A., Suzuki I., Kaneda K., Yanagihara Y. 1996; Characterization of Borrelia sp. isolated from Ixodes tanuki, I. turdus, and I. columnae in Japan by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. FEMS Microbiol. Lett. 142:77–83
    [Google Scholar]
  28. Nohlmans L. M. K. E., de Boer R., van den Bogaard A. E. J. M., van Boven C. P. A. 1995; Genotypic and phenotypic analysis of Borrelia burgdorferi isolates from The Netherlands. J. Clin. Microbiol. 33:119–125
    [Google Scholar]
  29. Péter O., Bretz A. G. 1992; Polymorphism of outer surface proteins of Borrelia burgdorferi as a tool for classification. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. 277:28–33
    [Google Scholar]
  30. Popovic T., Bopp C. A., Olsvik O., Kiehlbauch J. A. 1993; Ribotyping in molecular epidemiology. 573–583 Persing D. H., Smith T. F., Tenover F. C., White T. J. Diagnostic molecular microbiology: principles and applications American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  31. Postic D., Assous M. V., Grimont P. A. D., Baranton G. 1994; Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int. J. Syst. Bacteriol. 44:743–752
    [Google Scholar]
  32. Postic D., Baranton G. 1994; Molecular fingerprinting and phylogeny of Borrelia burgdorferi sensu lato. 133–147 Yanagihara Y., Masuzawa T. Proceedings of the International Symposium on Lyme Disease in Japan 1994 Kanzanji, Hamamatsu, Shizuoka, Japan:
    [Google Scholar]
  33. Preac-Mursic V., Wilske B., Schierz G. 1986; European Borrelia burgdorferi isolated from humans and ticks: culture conditions and antibiotic susceptibility. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 263:112–118
    [Google Scholar]
  34. Rijpkema S., Golubic D., Molkenboer M., Verbeek-De Kruif N., Schellekens J. 1996; Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a lyme borreliosis endemic region of north Croatia. Exp. Appl. Acarol. 20:23–30
    [Google Scholar]
  35. Rijpkema S. G. T., Molkenboer M. J. C. H., Schouls L. M., Jongejan F., Schellekens J. F. P. 1995; Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J. Clin. Microbiol. 33:3091–3095
    [Google Scholar]
  36. Rijpkema S. G. T., Tazelaar D., Molkenboer M., Noordhoek G., Plantinga G., Schouls L., Schellekens J. 1997; Detection of Borrelia afzelii, Borrelia burgdorferi sensu stricto, Borrelia garinii and group VS116 by PCR in skin biopsies of patients with erythema migrans and acrodermatitis chronica atrophicans. Clin. Microbiol. Infect. 3:109–116
    [Google Scholar]
  37. Shoberg R. J., Jonsson M., Sadziene A., Bergstrom S., Thomas D. D. 1994; Identification of a highly cross-reactive outer surface protein B epitope among diverse geographic isolates of Borrelia spp. causing Lyme disease. J. Clin. Microbiol. 32:489–500
    [Google Scholar]
  38. Stalhammar-Carlemalm M., Jenny E., Gern L., Aeschlimann A., Meyer J. 1990; Plasmid analysis and restriction fragment length polymorphism of chromosomal DNA allow a distinction between Borrelia burgdorferi strains. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. 274:28–39
    [Google Scholar]
  39. Steere A. C. 1989; Lyme disease. N. Engl. J. Med. 321:586–596
    [Google Scholar]
  40. van Belkum A. 1994; DNA fingerprinting of medically important microorganisms by PCR. Clin. Microbiol. Rev. 7:174–184
    [Google Scholar]
  41. van Dam A. P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C. P., Kramer M. D., Dankert J. 1993; Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 17:708–717
    [Google Scholar]
  42. Vos K., van Dam A. P., Kuiper H., Bruins H., Spanjaard L., Dankert J. 1994; Seroconversion for Lyme borreliosis among Dutch military. Scand. J. Infect. Dis. 26:427–134
    [Google Scholar]
  43. Wilske B., Preac-Mursic V., Gobel U. B., Graf B., Jauris S., Soutschek E., Schwab E., Zumstein G. 1993; An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J. Clin. Microbiol. 31:340–350
    [Google Scholar]
  44. Wilske B., Jauris-Heipke S., Lobentanzer R., Pradel I., Preac-Mursic V., Rossler D., Soutschek E., Johnson R. C. 1995; Phenotypic analysis of outer surface protein C (OspC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and OspA serotype. J. Clin. Microbiol. 33:103–109
    [Google Scholar]
  45. Wilson K. 1988; Preparation of genomic DNA from bacteria. 2.4.1–2.4.5 Ausubel F. M. Current protocols in molecular biology 1 John Wiley & Sons; New York, N.Y.:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-926
Loading
/content/journal/ijsem/10.1099/00207713-47-4-926
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error