1887

Abstract

A thermophilic, anaerobic, spore-forming bacterium (strain JW/AS-Y6) was isolated from a mixed sediment-water sample from a hot spring (Calcite Spring area) at Yellowstone National Park. The vegetative cells of this organism were straight rods, 0.4 to 0.6 by 3.0 to 6.5 µ.m. Cells occurred singly and exhibited a slight tumbling motility. They formed round refractile endospores in terminal swollen sporangia. Cells stained gram positive. The temperature range for growth at pH 6.8 was 43 to 65°C, with optimum growth at 58°C. The range for growth at 60°C (pH; with the pH meter calibrated at 60°C) was 5.9 to 7.8, with an optimum pH600 of 6.3 to 6.5. The substrates utilized included glycerol, glucose, fructose, mannose, galactose, xylose, lactate, glycerate, pyruvate, and yeast extract. In the presence of CO, acetate was the only organic product from glycerol and carbohydrate fermentation. No H was produced during growth. The strain was not able to grow chemolitho-trophically at the expense of H-CO; however, suspensions of cells in the exponential growth phase consumed H. The bacterium reduced fumarate to succinate and thiosulfate to elemental sulfur. Growth was inhibited by ampicillin, chloramphenicol, erythromycin, rifampin, and tetracycline, but not by streptomycin. The G+C content of the DNA was 54.5 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolate in the Gram type-positive subphylum. On the basis of physiological properties and phylogenetic analysis we propose that the isolated strain constitutes a new species, ; the type strain is JW/AS-Y6 (= DSM 11254 = ATCC 700316).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-969
1997-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-969.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-969&mimeType=html&fmt=ahah

References

  1. Beaty P. S., Ljungdahl L. G. 1991; Growth of Clostridium thermoaceticum on methanol, ethanol, propanol, and butanol in medium containing either thiosulfate or dimethylsujfoxide, abstr. K-131. 236 Abstracts of the 91st Annual Meeting of the American Society for Microbiology 1991 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  2. Cato E. P., George W. L., Finegold S. M. 1986; Genus Clostridium. 1141–1200 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 The Williams and Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826
    [Google Scholar]
  4. Cook G. M., Rainey F. A., Patel B. K. C., Morgan H. W. 1996; Characterization of a new obligately anaerobic thermophile, Thermoanaerobacter wiegelii sp. nov. Int. J. Syst. Bacteriol. 46:123–127
    [Google Scholar]
  5. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfide-reducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  6. Daniel S. L., Hsu T., Dean S. I., Drake H. L. 1990; Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172:4464–4471
    [Google Scholar]
  7. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  8. Doetsch R. N. 1981; Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general microbiology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  9. Drake H. L. 1982; Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J. Bacteriol. 150:702–709
    [Google Scholar]
  10. Durand P., Reysenbach A. L., Prieur D., Pace N. 1993; Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch. Microbiol. 159:39–44
    [Google Scholar]
  11. Eichler B., Schink B. 1984; Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140:147–152
    [Google Scholar]
  12. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J. 1942; A new type of glycose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715
    [Google Scholar]
  13. Kerby R., Zeikus J. G. 1983; Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr. Microbiol. 8:27–30
    [Google Scholar]
  14. Lee Y. E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermo-anaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb, nov., Thermoanaerobacterium thermosulfurigenes comb, nov., and Thermoanaerobacter thermohydrosulfuricus comb, nov., respectively; and transfer of Clostridium theπnohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol. 43:41–51
    [Google Scholar]
  15. Ljungdahl L. G., Wiegel J. 1986; Anaerobic fermentations. 84–96 Demain A. L., Solomon N. A. Manual of industrial microbiology and biotechnology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of desoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  18. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocistemum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46:397–402
    [Google Scholar]
  19. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10:41–48
    [Google Scholar]
  20. Patel B. K., C, Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov., sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141:63–69
    [Google Scholar]
  21. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45:85–89
    [Google Scholar]
  22. @@ @@, Seifritz C., Daniel S. L., Gobner A., Drake H. L. 1993; Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175:8008–8013
    [Google Scholar]
  23. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31–43
    [Google Scholar]
  24. Svetlitshnyi V., Rainey F., Wiegel J. 1996; Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int. J. Syst. Bacteriol. 46:1131–1137
    [Google Scholar]
  25. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180
    [Google Scholar]
  26. Whitman W. B., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol. 7:235–240
    [Google Scholar]
  27. Wiegel J. 1981; Distinction between the Gram reaction and the Gram type of bacteria. Int. J. Syst. Bacteriol. 31:88
    [Google Scholar]
  28. Wiegel J., Braun M., Gottschalk G. 1981; Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260
    [Google Scholar]
  29. Wiegel J. 1986; Genus Thermoanaerobaçter. 1379–1383 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 The Williams and Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  30. Wiegel J. 1992; The obligate anaerobic thermophilic bacteria. 105–184 Kristjannson J. K. Thermophilic bacteria CRC Press; Boca Raton, Fla.:
    [Google Scholar]
  31. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem. 238:2882–2886
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-969
Loading
/content/journal/ijsem/10.1099/00207713-47-4-969
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error