1887

Abstract

The genus is proposed for aerobic endospore-forming Gram-variable rod-shaped bacteria, which are ammonium-dependent, obligately oxalotrophic and haloalkalitolerant, oxidase- and catalase-positive, mesophilic and motile by peritrichous flagella. Cell wall contained two electron-dense layers. The external layer consists of a chain of electron-dense granules morphologically resembling the cellulosomes of . Two species are described, gen. nov., sp. nov. and gen. nov., sp. nov. The type strains of these species are strains RAOx-1 (= DSM 11538) and RAOx-FS (= DSM 11537), respectively. strains were isolated from the rhizosphere of sorrel () and from decaying wood. The strains require a high concentration of ammonium ions and use oxalate as the sole organic source of carbon and energy for growth; no growth factors were required. Growth occurred at pH 6.8--9.5. The optimum temperature and pH for growth were 28--30 °C and 8.0--8.5. All strains grew in a saturated solution of ammonium oxalate, and tolerated 3% NaCl. Whole-cell hydrolysates contain -diaminopimelic acid and glucose. The menaquinone of the strains was MK 7, and the major cellular fatty acids were 12-methyl tetradecanoic, -hexadec-9-enoic and hexadecanoic acids. The G+C content of the DNA was 45--46 mol% for and 42 mol% for . The almost complete 16S rDNA sequence of three strains of the two species of shows that the genus falls into the radiation of the subphylum of Gram-positive bacteria. The closest phylogenetic neighbour of is . The DNA-DNA hybridization value between strains RAOx-1 and RAOx-FS was 39.7%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-1-151
1998-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/1/ijs-48-1-151.html?itemId=/content/journal/ijsem/10.1099/00207713-48-1-151&mimeType=html&fmt=ahah

References

  1. Allison M. J., Dawson K. A., Mayberry W. R., Foss J. G. 1985; Oxalobacter formigenes gen. nov., sp. nov.: oxalate- degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141:1–7
    [Google Scholar]
  2. Anthony C., Zatman L. J. 1964; The microbial oxidation of methanol. 1. Isolation and properties of Pseudomonas sp. M27. Biochem J 92:609–614
    [Google Scholar]
  3. Baetz A. L., Allison M. J. 1992; Localization of oxalyl- coenzyme A decarboxylase, and formy 1-coenzyme A transferase in Oxalobacter formigenes cells. Syst Appl Microbiol 15:167–171
    [Google Scholar]
  4. Bayer E. A., Setter E., Lamed R. 1985; Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559
    [Google Scholar]
  5. Blackmore M. A., Quayle J. R. 1970; Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem J 118:53–59
    [Google Scholar]
  6. Brosius J., Palmer M., L, Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  7. Chandra T. S., Shethna Y. I. 1975; Isolation and characterization of some new oxalate-decomposing bacteria. Antonie Leeuwenhoek J Microbiol Serol 41:101–111
    [Google Scholar]
  8. Chandra T. S., Shethna Y. I. 1975; Oxalate and formate metabolism in Alcaligenes and Pseudomonas species. Antonie Leeuwenhoek J Microbiol Serol 41:465–477
    [Google Scholar]
  9. Chandra T. S., Shethna Y. I. 1977; Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novel-lus. J Bacteriol 131:389–398
    [Google Scholar]
  10. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826
    [Google Scholar]
  11. Cornick N. A., Allison M. J. 1996; Anabolic incorporation of oxalate by Oxalobacter formigenes. Appl Environ Microbiol 62:3011–3013
    [Google Scholar]
  12. Dehning I., Schink B. 1989; Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. Arch Microbiol 153:79–84
    [Google Scholar]
  13. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridisation from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  14. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  15. de Vries G. E., KUes U., Stahl U. 1990; Physiology and genetics of methylotrophic bacteria. FEMS Microbiol Rev 75:57–102
    [Google Scholar]
  16. Dijkhuizen L., Harder W. 1975; Substrate inhibition in Pseudomonas oxalaticus OX1: a kinetic study of growth inhibition by oxalate and formate using extended cultures. Antonie Leeuwenhoek J Microbiol Serol 41:135–146
    [Google Scholar]
  17. Dijkhuizen L., Knight M., Harder W. 1978; Metabolic regulation in Pseudomonas oxalaticus OX1. Autotrophic and heterotrophic growth on mixed substrates. Arch Microbiol 116:77–83
    [Google Scholar]
  18. DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH 1993 Catalogue of Strains, 5th. edn. Braunschweig, Germany: DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH;
    [Google Scholar]
  19. Dutton M. V., Evans C. S. 1996; Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895
    [Google Scholar]
  20. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  21. Felix C. R., Ljungdahl L. G. 1993; The cellulosome: the exocellular organelle of Clostridium. Annu Rev Microbiol 47:791–819
    [Google Scholar]
  22. Felsenstein J. 1993; phylip (phylogenetic inference package) version 3.5.1. Department of Genetics University of Washington; Seattle, USA:
    [Google Scholar]
  23. Friedrich C. G., Friedrich B., Bowien B. 1979; Formate and oxalate metabolism in Alcaligenes eutrophus. J Gen Microbiol 115:185–192
    [Google Scholar]
  24. Graustein W. C., Cromack K. Jr, Sollins P. 1977; Calcium oxalate: occurrence in soil and effect on nutrient and geochemical cycles. Science 198:1252–1254
    [Google Scholar]
  25. Haas W. H., Bretzel G., Amthor B., Schilke K., Krommes G., Rusch-Gerdes S., Sticht-Groh V., Bremer H. J. 1997; Comparison of DNA fingerprint patterns of isolates of Mycobacterium africanum from East and West Africa. J Clin Microbiol 35:663–666
    [Google Scholar]
  26. Harder W. 1973; Microbial metabolism of organic Cj and C2 compounds. Antonie Leeuwenhoek J Microbiol Serol 39:650–652
    [Google Scholar]
  27. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. (editors) 1994 Bergey's Manual of Systematic Bacteriology, 9th. edn. Baltimore: Williams Wilkins;
    [Google Scholar]
  28. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  29. Jahnke K.-D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  30. Jayasuriya G. C. N. 1955; The isolation and characteristics of an oxalate-decomposing organism. J Gen Microbiol 12:419–428
    [Google Scholar]
  31. Jenni B„, Realini L., Aragno M., Tamer A. U. 1988; Taxonomy of non H-lithotrophic, oxalate-oxidizing bacteria related to Alcaligenes eutrophus. Syst Appl Microbiol 10:126–133
    [Google Scholar]
  32. Jurinak J. J., Dudley L. M., Allen M. F., Knight J. G. 1986; The role of calcium oxalate in the availability of phosphorus in soil of semiarid regions: a thermodynamic study. Soil Sci 142:255–261
    [Google Scholar]
  33. Kaneda T., Takamiya A. 1963; Studies on the metabolism of oxalic acid in Bacterium oxalophilum. I. Isolation, description and nutritional requirements. J Gen Appl Microbiol 9:223–232
    [Google Scholar]
  34. Kampfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98
    [Google Scholar]
  35. Khambata S. R., Bhat J. V. 1953; Studies on a new oxalate-decomposing bacterium, Pseudomonas oxalaticus. J Bacteriol 66:505–507
    [Google Scholar]
  36. Knutson D. M., Hutchins A. S., Cromack K. Jr 1980; The association of calcium oxalate-utilizing Streptomyces with conifer ectomycorrhizae. Antonie Leeuwenhoek 46:611619
    [Google Scholar]
  37. Libert B., Franceschi V. R. 1987; Oxalate in crop plants. J Agric Food Chem 35:926–938
    [Google Scholar]
  38. Lung H. Y., Baetz A. L., Peck A. B. 1994; Molecular cloning, DNA sequence, and gene expression of the oxalyl- coenzyme A decarboxylase gene, oxc from the bacterium Oxalobacter formigenes. J Bacteriol 176:2468–2472
    [Google Scholar]
  39. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:34853487
    [Google Scholar]
  40. Mehta R. J. 1973; Studies on methanol-oxidizing bacteria. I. Isolation and growth studies. Antonie Leeuwenhoek J Microbiol Serol 39:295–302
    [Google Scholar]
  41. Meijer W. G., Dijkhuizen L. 1988; Regulation of auto- trophic metabolism in Pseudomonas oxalaticus OX1 wild- type and an isocitrate-lyase-deficient mutant. J Gen Microbiol 134:3231–3237
    [Google Scholar]
  42. Morris S. J., Allen M. F. 1994; Oxalate-metabolizing microorganisms in sagebrush steppe soil. Biol Fertil Soils 18:255–259
    [Google Scholar]
  43. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Nohynek L. J., Nurmiaho-Lassila E.-L., Suhonen E. L., Busse H.-J., Mohammadi M., Hantula J., Rainey F., Salkinoja- Salonen M. S. 1996; Description of chlorophenol-degrad-ing Pseudomonas sp. strains KF1T KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46:1042–1055
    [Google Scholar]
  45. Peel D., Quayle J. R. 1961; Microbial growth on Ct compounds. 1. Isolation and characterization of Pseudomonas AMI. Biochem 81:465–469
    [Google Scholar]
  46. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila : its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst Appl Microbiol 15:197–202
    [Google Scholar]
  47. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092
    [Google Scholar]
  48. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  49. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  50. Strunk O., Ludwig W. 1995; ARB-a software environment for sequence data. Department of Microbiology Technical University of Munich; Munich, Germany: (email: [email protected])
    [Google Scholar]
  51. Taylor I. J., Anthony C. 1976; A biochemical basis for obligate methylotrophy: properties of a mutant of Pseudomonas AMI lacking 2-oxoglutarate dehydrogenase. J Gen Microbiol 93:259–265
    [Google Scholar]
  52. Vaisanen O. M., Nurmiaho-Lassila E.-L., Marmo S. A., Salkinoja-Salonen M. S. 1994; Structure and composition of biological slimes on paper and board machines. Appl Environ Microbiol 60:641–635
    [Google Scholar]
  53. Zaitsev G. M., Govorukhina N. I., Laskovneva O. V., Trotsenko A. Yu. 1993; Properties of the new obligately oxalotrophic bacterium Bacillus oxalophilus. Microbiology (English translation of Mikrobiologiya 62:378–382
    [Google Scholar]
  54. Zaitsev G., Govorukhina N., Suzina N., Uotila J., Trotsenko Yu, Salkinoja-Salonen M. 1994; Properties of the new obligate oxalotroph Bacillus oxalophilus. In Abstracts of the 7th International Congress of Bacteriology and Applied Microbiology Division 1994, Prague Abstract BC-1/24, p. 225 Singapore: International Union of Microbiological Societies;
    [Google Scholar]
  55. Zaitsev G. M., Uotila J. S., Tsitko I. V., Lobanok A. G., Salkinoja-Salonen M. S. 1995; Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol 61:4191–4201
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-1-151
Loading
/content/journal/ijsem/10.1099/00207713-48-1-151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error