1887

Abstract

PCR-RFLP with nine restriction enzymes was applied to the 16S and 23S rRNA genes of 42 rhizobial and agrobacterial strains to determine the phylogenetic position of and increase the understanding of the evolution of ribosomal operons. The strains were selected based on previous phylogenetic studies. PCR primers were designed so that they amplified a 2·3 kb fragment of the 23S rRNA gene (excluding the B8 loop). Universal primers rD1 and fD1 were used to amplify the full-length 16S rRNA. The RFLP analysis resulted in 27 and 32 different restriction patterns for 16S and 23S, respectively. The RFLP patterns were transformed to genetic distances and dendrograms were constructed from the data using the unweighted pair group method with averages. The shapes of the dendrograms derived from the analysis of the 16S and 23S rRNA genes correlated well, with only a few strains having different positions. The 23S tree generally had deeper branching than the 16S tree, allowing better discrimination between species and strains. The combined data from the two analyses described 36 genotypes. The eight strains formed a homogeneous cluster in all dendrograms. The RFLP analysis was confirmed by partial sequence analysis of the 16S rRNA gene (the first 800 bp), which correlated well with full-length 16S rRNA sequence analysis. The 16S data placed near the genus with as its nearest neighbour, whereas in the 23S and the combined dendrograms it showed closer affinity to the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-2-349
1998-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/2/ijsem-48-2-349.html?itemId=/content/journal/ijsem/10.1099/00207713-48-2-349&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Burgin A. B., Parodos K., Lane D. J., Pace N. R. 1990; The excision of intervening sequences from Salmonella 23 S ribosomal RNA. Cell 60:405–414
    [Google Scholar]
  3. de Lajudie P., Willems A., Pot B., Dewettinck M. D., Dreyfus B., Kersters K., Gillis M. 1994; Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb, nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacterial 44:715
    [Google Scholar]
  4. Eardly B. D., Wang F.-S., van Berkum P. 1996; Corresponding 16S rRNA segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186:69–74
    [Google Scholar]
  5. Euvgenieva-Hackelberg E., Selenska-Pobell S. 1995; Variability of the 5′ end of the large subunit rDNA and the presence of a new short class of rRNA in the family of Rhizobiaceae. Lett Appl Microbiol 21:405–406
    [Google Scholar]
  6. Gutell R. R., Gray M. W., Schnare M. 1993; A compilation of large subunit (23 S and 23S-like) ribosomal RNA structures. Nucleic Acids Res 21:3055–3074
    [Google Scholar]
  7. Van Camp G., Chapelle S., De Wachter R. 1993; Amplification and sequencing of variable regions in bacterial 23S ribosomal RNA genes with conserved primer sequences. Curr Microbiol 27:147–151
    [Google Scholar]
  8. Hsu D., Zee Y. C., Ingraham J., Shih L-M. 1992; Diversity of cleavage patterns of Salmonella 23S rRNA. J Gen Microbiol 138:199–203
    [Google Scholar]
  9. Jarvis B. D., Downer H. L., Young J. P. W. 1992; Phylogeny of fast-growing soybeannodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int J Syst Bacterial 42:93–96
    [Google Scholar]
  10. Jarvis B. D. W., Sivakumaran S., Tighe S. W., Gillis M. 1996; Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 184:143–158
    [Google Scholar]
  11. Jensen M. A., Straus N. 1993; Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of ribosomal DNA spacer regions. PCR Methods Appl 3:186–194
    [Google Scholar]
  12. Jensen M. A., Webster J. A., Straus N. 1993; Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952
    [Google Scholar]
  13. Laguerre G., Allard M. R., Revoy F., Amarger N. 1994; Rapid identification of rhizobia by restriction fragment polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63
    [Google Scholar]
  14. Lindstrôm K., Sarsa L. M., Polkunen J., Kansanen P. 1985; Symbiotic nitrogen fixation of Rhizobium sp. (Galega) in acid soils, and its survival in soil under acid and cold stress. Plant Soil 87:293–302
    [Google Scholar]
  15. Lindstrôm K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacterial 39:365–367
    [Google Scholar]
  16. Lindstrôm K., Van Berkum P., Gillis M., Martinez E., Novikova N., Jarvis B. 1995; Report from the roundtable on Rhizobium taxonomy. Nitrogen Fixation: Fundamentals and Applications807–810 Edited by Tikhonovich I. A., Provorov N. A., Romanov V. I., Newton W. E. Dordrecht, The Netherlands: Kluwer;
    [Google Scholar]
  17. Ludwig W., Schleifer K. H. 1994; Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15:155–173
    [Google Scholar]
  18. Nei M., Li W. H. 1979; Mathematical model for studying genetic variations in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273
    [Google Scholar]
  19. Nick G., Lindstrdm K. 1994; Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomic DNA of Rhizobium galegae strains and to identify the DNA obtained by sonicating the liquid cultures and root nodules. Syst Appl Microbiol 17:265–273
    [Google Scholar]
  20. Nick G. 1997 Unpublished
  21. Nour S. M., Fernandez M. P., Normand P., Clayet-Marel J.-C. 1994; Rhizobium ciceri sp. nov., consisting strains that nodulate chickpeas (Cicer artenium L.). Int J Syst Bacteriol 44:511–522
    [Google Scholar]
  22. Normand P., Cournoyer B., Nazaret S., Simonet P. 1992; Analysis of a ribosomal operon in the actinomycete Frankia. Genetti119–124
    [Google Scholar]
  23. Ridell J., Siitonen A., Paulin L, Lindroos O., Korkeala H., Albert J. M. 1995; Characterization of Hafnia alvei by biochemical tests, random amplified polymorphic DNA PCR, and partial sequencing of 16S rRNA gene. J Clin Microbiol 33:2372–2376
    [Google Scholar]
  24. Sawada H., Oyaizu H., Matsumoto S. 1993; Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43:694–702
    [Google Scholar]
  25. Selenska-Pobell S., Gigova L., Petrova N. 1995; Strainspecific fingerprints of Rhizobium galegae generated by PCR with arbitrary and repetitive primers. J Appl Bacteriol 79:425–431
    [Google Scholar]
  26. Stone B. B., Wietupski R. M., Breton G. L., Wiesburg W. G. 1995; Comparison of Mycobacterium 23S rRNA sequences by high-temperature reverse transcription and PCR. Int J Syst Bacteriol 45:811–819
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  28. Wiesburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  29. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43:305–313
    [Google Scholar]
  30. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  31. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA genes using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120
    [Google Scholar]
  32. Young J. P. W., Downer L. H., Eardly B. D. 1991; Phylogeny of the phototropic Rhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277
    [Google Scholar]
  33. Young J. P. W., Haukka K. 1996; Diversity and phylogeny of rhizobia. New Phytol 133:87–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-2-349
Loading
/content/journal/ijsem/10.1099/00207713-48-2-349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error