1887

Abstract

Seven bacterial strains capable of oxidizing methyl sulfides were isolated from experimental biofilters filled with tree-bark compost. The isolates could be divided into two groups according to their method of methyl sulfide degradation. Four isolates could use only dimethyl disulfide as the sole source of energy and three strains were able to use dimethyl sulfide and dimethyl disulfide. Oxidation of the methyl sulfides by both groups led to the stoichiometric formation of sulfate. Chemotaxonomic, morphological, physiological and phylogenetic properties identified all isolates as members of the genus Pseudonocardia. The absence of phosphatidylcholine from the polar lipid pattern, as well as results of 165 rDNA analyses, led to the proposal of two new species, Pseudonocardia asaccharolytica sp. nov. and Pseudonocardia sulfidoxydans sp. nov. The type strains are P. asaccharolytica DSM 44247and P. sulfidoxydans DSM 44248. With respect to the characteristic polar lipid pattern and the ability to oxidize sulfides, an emended description of the genus Pseudonocardia is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-2-441
1998-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/2/ijsem-48-2-441.html?itemId=/content/journal/ijsem/10.1099/00207713-48-2-441&mimeType=html&fmt=ahah

References

  1. Akimov V. N., Evtushenko L. I., Dobritsa S. V. 1989; Pseudoamycolata halophobica gen. nov., sp. nov. Int J Syst Bacterial 39:457–461
    [Google Scholar]
  2. Becker B., Lechevalier M. P., Gordon R. E., Lechevalier H. A. 1964; Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 12:421–423
    [Google Scholar]
  3. Brosius J., Palmer M. L, Kennedy P. J., NoIler H. F. 1978; Complete nucleotide sequence of a 16S ribosomal gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  5. De Ley P., Cattoir H., Reeynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  6. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  7. Embley T. M., Smida J., Stackebrandt E. 1988; The phylogeny of mycolateless wall chemotype IV actinomycetes and description of Pseudonocardiaceae fam. nov. Syst Appl Microbiol 11:44–52
    [Google Scholar]
  8. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  9. Evtushenko L. I., Akimov V. N., Dobritsa S. V., Taptykova S. D. 1989; A new species of actinomycète, Amycolata alni. Int J Syst Bacteriol 39:72–77
    [Google Scholar]
  10. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. -N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63
    [Google Scholar]
  11. Henssen A. 1957; Beiträge zur Morphologie und Systematik der thermophilen Actinomyceten. Arch Mikrobiol 26:374–414
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  13. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. Mammalian Protein Metabolism21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Kanagawa T., Kelly D. P. 1986; Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19
    [Google Scholar]
  16. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycètes and related organisms. Chemical Methods in Bacterial Systematics, SAB Technical Series No. 20173–199 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  17. Kroppenstedt R. M. 1992; The genus Nocar diopsis. The Prokaryotes1139–1153 Edited by Balows A., Trüper H. G., Dworkin M. New York: Springer;
    [Google Scholar]
  18. Lechevalier M. P. 1968; Identification of aerobic actinomycètes of clinical importance. J Lab Clin Med’ll934–944
    [Google Scholar]
  19. Lechevalier M. P., de Bievre C., Lechevalier H. 1977; Chemotaxonomy of aerobic actinomycètes: phospholipid composition. Biochem Syst Ecol 5:249–260
    [Google Scholar]
  20. Lechevalier M. P., Prauser H., Labeda D. P., Ruan J.-S. 1986; Two new genera of nocardioform actinomycètes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 36:29–37
    [Google Scholar]
  21. Lipski A., Altendorf K. 1997; Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. Syst Appl Microbiol 20:448–457
    [Google Scholar]
  22. Maidak B. L, Larsen N., McGaughey M. J., Overbeck R., Ohlsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3483–3487
    [Google Scholar]
  23. McVeigh H. P., Munro J., Embley T. M. 1994; The phylogenetic position of Pseudoamycolata halophobica (Akimov et al., 1989) and a proposal to reclassify it as Pseudonocardia halophobica. Int J Syst Bacteriol 44:300–302
    [Google Scholar]
  24. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of wholeorganism methanolysates. J Gen Microbiol 88:200–204
    [Google Scholar]
  25. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241
    [Google Scholar]
  26. Pol A., Op den Camp H. J. M., Mees S. G. M., Kersten M. A. S. H., van der Drift C. 1994; Isolation of a dimethylsulfideutilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation 5:105–112
    [Google Scholar]
  27. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila’, its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst Appl Microbiol 15:197–202
    [Google Scholar]
  28. Sasser M. 1990; Identification of bacteria through fatty acid analysis. Methods in Phytobacteriology199–204 Edited by Klement Z., Rudolph K., Sands D. C. Budapest: Akademiai Kiado;
    [Google Scholar]
  29. Sivelä S., Sundman V. 1975; Demonstration of Thiobacillus-type bacteria, which utilize methyl sulphides. Arch Microbiol 103:303–304
    [Google Scholar]
  30. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491
    [Google Scholar]
  31. Stahl E. 1969 Thin-layer Chromatography, 2nd. Berlin: Springer;
    [Google Scholar]
  32. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  33. Uchida K., Aida K. 1977; Acyl type of bacterial cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 23:249–260
    [Google Scholar]
  34. Van Langenhove H., Bendinger B., OberthUr R., Schamp N. 1992; Organic sulfur compounds: persistent odorants in the biological treatment of complex waste gases. Biotechniques for Air Pollution Abatement and Odour Control Policies177–182 Edited by Dragt A. J., van Ham J. Amsterdam: Elsevier;
    [Google Scholar]
  35. Warwick S., Bowen T., McVeigh H., Embley T. M. 1994; A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J Syst Bacteriol 44:293–299
    [Google Scholar]
  36. Zhang L., Kuniyoshi I., Hirai M., Shoda M. 1991; Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR-11 isolated from peat biofilter. Biotechnol Lett 13:223–228
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-2-441
Loading
/content/journal/ijsem/10.1099/00207713-48-2-441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error