1887

Abstract

Rod-shaped, thermophilic bacteria with a sheath-like outer structure (‘toga’) were isolated from hot oilfield water of a North Sea oil reservoir. One of the isolates, designated SJ95, is an obligately anaerobic, sheathed, Gram-negative, fermentative bacterium capable of reducing elemental sulfur to hydrogen sulfide and tolerating high salt concentrations. The optimum growth conditions for this isolate are 58-60°C and pH 6.5-7.0 with 3-4% NaCl and 0.7% MgSO.7HO in the medium. Vitamins are required for growth. Growth is stimulated by yeast extract. Cells of strain SJ95vary in size from 1-2 to 40-50 μm in length and are motile with a subpolar flagellation. Cells grown on xylan have xylanase activity, presumably associated with the toga, and glucose isomerase activity was detected in xylose-grown cells. The DNA G+C content is 31 and 34 mol%, determined by the thermal denaturation and HPLC methods, respectively. Phylogenetically, strain SJ95is most closely related to with a 97.7% similarity level between their 16S rDNA sequences. The DNA-DNA reassociation value between the two DNAs was 35.6%. On the basis of differences in genotypic, phenotypic and immunological characteristics, strain SJ95(= DSM 10674) is proposed as the type strain of a new species, . It can be readily distinguished from by its motility.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-1007
1998-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-1007.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-1007&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gond- wanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46265–269
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43260–296
    [Google Scholar]
  3. Beeder J., Nilsen R. K., Rosnes J. T., Torsvik T., Lien T. 1994; Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 601227–1231
    [Google Scholar]
  4. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164331–336
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81461–466
    [Google Scholar]
  6. Christensen B., Torsvik T., Lien T. 1992; Immuno- magnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl Environ Microbiol 581244–1248
    [Google Scholar]
  7. Davey M. E., Wood W. A., Key R., Nakamura K., Stahl D. A. 1993; Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the ‘Thermotogales’. Syst Appl Microbiol 16191–200
    [Google Scholar]
  8. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 54738–754
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaterts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12133–142
    [Google Scholar]
  10. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48621–626
    [Google Scholar]
  11. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-production well. Int J Syst Bacteriol 471013–1019
    [Google Scholar]
  12. Huber R., Langworthy T. A., König H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144324–333
    [Google Scholar]
  13. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov. represents a new genus of thermophilic eubacteria within the ‘ Thermotogales' . Syst Appl Microbiol 1232–37
    [Google Scholar]
  14. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘ Thermo- togales' . Arch Microbiol 154105–111
    [Google Scholar]
  15. Jeanthon C., Reysenbach A. L., L'Haridon S., Gambacorta A., Pace N. R., GIénat P., Prieur D. 1995; Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 16491–97
    [Google Scholar]
  16. Jukes T. H., Cantor R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism, pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Koch R., Canganella F., Hippe H., Jahnke K. D., Antranikian G. 1997; Purification and properties of a thermostable pullu- lanase from a newly isolated thermophilic bacterium, Fervidobacterium pennavorans Ven5. Appl Environ Microbiol 631088–1094
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 221680–685
    [Google Scholar]
  19. Lee C., Bhatnagar L., Saha B. C., Lee Y.-E., Takagi M., Imanaka T., Bagdasarian M., Zeikus J. G. 1990; Cloning and expression of the Clostridium thermosulfurogenes glucose isomerase gene in Escherichia coli and Bacillus subtilis . Appl Environ Microbiol 562638–2643
    [Google Scholar]
  20. Lever M. 1972; A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47273–279
    [Google Scholar]
  21. Lien T., Beeder J. 1997; Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 471124–1128
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39159–167
    [Google Scholar]
  23. Murray M. G., Thompson W. F. 1980; Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 84321–4325
    [Google Scholar]
  24. Nilsen R. K., Torsvik T. 1996; Methanococcus thermolitho- trophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62728–731
    [Google Scholar]
  25. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46397–402
    [Google Scholar]
  26. Pfennig N., Wagner S. 1986; An improved method of preparing wet mounts for photo-micrographs of microorganisms. J Microbiol Methods 4303–306
    [Google Scholar]
  27. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett 113125–128
    [Google Scholar]
  28. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylo- genetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 461088–1092
    [Google Scholar]
  29. Ravot G., Ollivier B., Magot M., Patel B. K. C., Crolet J.-L., Fardeau M., Garcia J.-L. 1995; Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales . Appl Environ Microbiol 612053–2055
    [Google Scholar]
  30. Ravot G., Ollivier B., Patel B. K. C., Magot M., Garcia J.-L. 1996; Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. Int J Syst Bacteriol 46321–323
    [Google Scholar]
  31. Rees G. N., Grassia G. S., Sheehly A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 4585–89
    [Google Scholar]
  32. Rosnes J. T., Torsvik T., Lien T. 1991a; Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 572302–2307
    [Google Scholar]
  33. Rosnes T., Torsvik T., Lien T., Graue A. 1991b; Degradation of glucose and production of H2S by a consortium of thermophilic bacteria under simulated reservoir conditions. In Microbial Enhancement of Oil Recovery - Recent Advances, pp 265–276 Edited by Donaldson E. C. Amsterdam: Elsevier;
    [Google Scholar]
  34. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44846–849
    [Google Scholar]
  35. Sunna A., Moraca M., Antranikian G. 1997; Glycosyl hydrolases from hyperthermophiles. Extremophiles 12–13
    [Google Scholar]
  36. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic Archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365743–745
    [Google Scholar]
  37. Widdel F., Pfennig N. 1984; Dissimilatory sulfate- or sulfur- reducing bacteria. In Bergey's Manual of Systematic Bacteriology, vol 1 pp 663–679 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  38. Widdel F., Kohringen G. W., Mayer F. 1983; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desul- fonema limicola gen. nov. and sp. nov. and Desulfonema magnum sp. nov. Arch Microbiol 129286–294
    [Google Scholar]
  39. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13161–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-1007
Loading
/content/journal/ijsem/10.1099/00207713-48-3-1007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error