1887

Abstract

Phylogenetic analysis of 20 strains ( and ) was conducted by using the nucleotide sequences of the genes for 16S rRNA, DNA gyrase B subunit () and RNA polymerase σfactor (), which have been determined by the direct sequencing of PCR-amplified fragments. On the basis of and sequences, these strains were split into two major clusters: one including the type strain of and all biovar A strains and the other including all biovar B strains, strains and the strain. In the phylogenetic tree reconstructed from the 16S rRNA sequences including variable regions, biovar A and B strains were not separated into two independent clusters, whereas in the phylogenetic tree reconstructed from the 16S rRNA sequences excluding the variable region sequences, these strains were separated into biovar A and biovar B clusters. The pairwise distances estimated from the variable regions of 16S rRNA correlated poorly with the synonymous distances estimated from the and genes. On the other hand, a highly significant correlation was observed between the pairwise distances estimated from the non-variable regions of 16S rRNA and the synonymous distances from and genes. Consequently, only the 16S rRNA sequences in the non-variable regions should be used for the phylogenetic analysis. The and analyses showed the necessity for the reclassification of biovar B strains.

Keyword(s): 16S rRNA , gyrB , PCR , Pseudomonas and rpoD
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-813
1998-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-813.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-813&mimeType=html&fmt=ahah

References

  1. Barnsley E. A. 1976; Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate. J Bacteriol 125:404–408
    [Google Scholar]
  2. Bochner B. R. 1989; Sleuthing out bacterial identities. Nature 339:157–158
    [Google Scholar]
  3. Brosius J., Palmer M., L, Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Nad Acad Sci USA 75:4801–4805
    [Google Scholar]
  4. Burton Z., Burgess R. R., Lin J., Moore D., Holder S., Gross C. A. 1981; The nucleotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from E. coli K12. Nucleic Acids Res 9:2889–2903
    [Google Scholar]
  5. Dams E., Hendriks L, Van de Peer Y., Neefs J. M., Smits G., Vandenbempt I., De Wachter R. 1988; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16:suppl.r87–rl73
    [Google Scholar]
  6. Dickerson R. E. 1971; The structures of cytochrome c and the rates of molecular evolution. J Mol Evol 1:26–45
    [Google Scholar]
  7. Dixon M. T., Hillis D. M. 1993; Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Mol Biol Evol 10:256–267
    [Google Scholar]
  8. Edwards U., Rogall T., Blocker H., Emde M., Bottger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853
    [Google Scholar]
  9. Feist C. F., Hegeman G. D. 1969; Regulation of the meta cleavage pathway for benzoate oxidation by Pseudomonas putida. J Bacteriol 100:1121–1123
    [Google Scholar]
  10. Felsenstein J. 1989; phylip-phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416
    [Google Scholar]
  12. Fox G. E., Wisotzkey J. D., Jurtshuk P. J. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  13. Furukawa K., Hayase N., Taira K., Tomizuka N. 1989; Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J Bacteriol 171:5467–5472
    [Google Scholar]
  14. Hancock J. M., Tautz D., Dover G. A. 1988; Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Mol Biol Evol 5:393–414
    [Google Scholar]
  15. Johnson J. L. 1981; Genetic characterization. In Manual of Methods for General Bacteriology pp. 450–472 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Philips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 1993; mega: molecular evolutionary genetics analysis, version 1.01. Pennsylvania State University; PA, USA:
    [Google Scholar]
  18. Lawrence J. G., Hartl D., L & Ochman H. 1991; Molecular considerations in the evolution of bacteria genes. J Mol Evol 33:241–250
    [Google Scholar]
  19. Lonetto M., Gribskov M., Gross C. A. 1992; The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849
    [Google Scholar]
  20. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The ribosomal database project. Nucleic Acid Res 22:34853487
    [Google Scholar]
  21. Molin G., Nilsson I. 1985; Degradation of phenol by Pseudomonas putida ATCC 11172 in continuous culture at different ratios of biofilm surface to culture volume. Appl Environ Microbiol 50:946–950
    [Google Scholar]
  22. Nagashima H., Inoue J., Sasaki E., Yamamoto S., Sasaki Y., Yamauchi-lnomata Y., Harayama S. 1996; Long-chain n- alkanol dehydrogenase from Pseudomonas putida. J Ferment Bioeng 82:328–333
    [Google Scholar]
  23. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  24. Noller H. F. 1984; Structure of ribosomal RNA. Annu Rev Biochem 53:119–162
    [Google Scholar]
  25. Nurk A., Kasak L., Kivisaar M. 1991; Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. Gene 102:13–18
    [Google Scholar]
  26. Ochman H., Wilson A. C. 1987; Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86
    [Google Scholar]
  27. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6
    [Google Scholar]
  28. Rousset F., Pelandakis M., Solignac M. 1991; Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. Proc Natl Acad Sci USA 88:10032–10036
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. edn. NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schleifer K.-H., Ludwig W. 1994; Molecular taxonomy: classification and identification. In Bacterial Diversity and Systematics pp. 1–15 Edited by Priest F. G., Ramos-Cormenzana A., Tindall B. J. New York: Plenum Press;
    [Google Scholar]
  32. Shimao M., Nakamura T., Okuda A., Abe M., Harayama S. 1996; Characteristics of transposon insertion mutants of mandelic acid-utilizing Pseudomonas putida strain A10L. Biosci Biotechnol Biochem 60:1051–1055
    [Google Scholar]
  33. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 28:1409–1438
    [Google Scholar]
  34. Stackebrandt E., Goebel B. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16SrRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  35. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp. 151–194 Edited by Goodfellow M., O’Donnell A. G. New York: Academic Press;
    [Google Scholar]
  36. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271
    [Google Scholar]
  37. Takeo M„, Maeda Y., Okada H., Miyama K., Mori K., Ike M., Fujita M. 1995; Molecular cloning and sequencing of the phenol hydroxylase gene from Pseudomonas putida BH. J Ferment Bioeng 79:485–488
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  39. Watt P. M., Hickson I. D. 1994; Structure and function of type II DNA topoisomerases. Biochem J 303:681–695
    [Google Scholar]
  40. Williams P. A., Murray K. 1974; Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423
    [Google Scholar]
  41. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  42. Yamagishi J., Yoshida H., Yamayoshi M., Nakamura S. 1986; Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol Gen Genet 204:367–373
    [Google Scholar]
  43. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  44. Yen K. M., Gunsalus I. C. 1985; Regulation of naphthalene catabolic genes of plasmid NAH7. J Bacteriol 162:1008–1013
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-813
Loading
/content/journal/ijsem/10.1099/00207713-48-3-813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error