1887

Abstract

Two irregular coccoid methanogens designated SEBR 4845and FR1T were isolated from an oilfield in Alsace, France. Strain SEBR 4845(T = type strain) is a hydrogenotrophic halotolerant methanogen, which grows optimally at 5% NaCI (w/v) and tolerates up to 12% NaCI. It does not use methylated compounds and therefore cannot be ascribed to any of the known genera of the halophilic methylotrophic methanogens. It differs from hydrogenotrophic members of the orders and in the NaCI growth range (0-12% NaCI), which is the widest reported to date for any hydrogenotrophic methanogen. 16S rRNA gene sequence analysis indicated that strain SEBR 4845is a novel isolate for which a new genus is proposed, gen. nov., sp. nov. (= OCM 470) that might be indigenous to the oilfield ecosystem. Strain FR1T (= OCM 471) is a moderately halophilic methanogen which grows optimally at 10% NaCI and tolerates up to 20% NaCI. It grows on trimethylamine and methanol as carbon and energy sources. The G+C content of its DNA is 43 mol%. It is therefore phenotypically and genotypically related to members of the genus This report provides evidence that methylotrophic and hydrogenotrophic, but not aceticlastic methanogens are present in a saline subsurface oilfield environment, as already observed in surface saline to hypersaline environments.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-821
1998-07-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-821.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-821&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gond-wanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum R. J., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Belyaev S. S., Wolkin R., Kenealy W. R., De Niro M., J„ Epstein S., Zeikus J. G. 1983; Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl Environ Microbiol 45:691–697
    [Google Scholar]
  4. Bernard F. P., Connan J., Magot M. 1992; Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques. In Proceedings of the 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers paper SPE 24811 pp. 1–10 Richardson, TX: SPE;
    [Google Scholar]
  5. Bhupathiraju V. K., Mdnerney M. J. 1993; Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol J 11:19–34
    [Google Scholar]
  6. Bhupathiraju V. K., Sharma P. K., Mdnerney M. J., Knapp R. M., Fowler K., Jenkins W. 1991; Isolation and characterization of novel halophilic anaerobic bacteria from oil field brines. In Microbial Enhancement of Oil Recovery - Recent Advances pp. 131–143 Edited by Donaldson E. C. Amsterdam: Elsevier Science;
    [Google Scholar]
  7. Cayol J.-L., Ollivier B., Lawson Anani Soh A. 7 other authors 1994; Haloincola saccharolytica subsp senegalensis subsp. nov., isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica. Int J Syst Bacteriol 44:805–811
    [Google Scholar]
  8. Cord-Ruwisch R., Ollivier B., Garcia J.-L. 1986; Fructose degradation by Desulfovibrio sp. in pure culture and in coculture with Methanospirillum hungatei. Curr Microbiol 13:285–289
    [Google Scholar]
  9. Cord-Ruwisch R., Kleinitz W., Widdel F. 1987; Sulfate- reducing bacteria and their activity in oil production. J Petrol Technol Jan97–105
    [Google Scholar]
  10. Davidova I. A., Harmsen H. J. M., Stams A. J. M., Belyaev S. S., Zehnder A. J. B. 1997; Taxonomic description of Methano-coccoides euhalobius and its transfer to the Methanohalophilus genus. Antonie Leeuwenhoek 71:313–318
    [Google Scholar]
  11. Davydova-Charakhch'yan I. A., Kuznetsova V. G., Mityushina L. L., Belyaev S. S. 1993a; Methane-forming bacilli from oil fields of Tartaria and Western Siberia. Microbiology (English translation of Mikrobiologiya) 61:202–207
    [Google Scholar]
  12. Davydova-Charakhch'yan I. A., Mileeva A. N., Mityushina L. L., Belyaev S. S. 1993b; Acetogenic bacteria from oil fields of Tartaria and Western Siberia. Microbiology (English translation of Mikrobiologiya) 61:306–315
    [Google Scholar]
  13. Fardeau M.-L., Faudon C., Cayol J.-L., Magot M., Patel B. K. C., Ollivier B. 1996; Effect of thiosulfate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacter finnii and a Thermoanaerobacter sp. isolated from oil field water. Res Microbiol 147:159–165
    [Google Scholar]
  14. Felsenstein J. 1993; phylip (Phylogenetic Inference Package) version 3.51c. Distributed by the author. Department of Genetics University of Washington; Seattle, USA:
    [Google Scholar]
  15. Garcia J.-L. 1990; Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308
    [Google Scholar]
  16. Holloway S., L, Faw G. M., Sizemore R. K. 1980; The bacterial community composition of an active oil field in the Northwestern Gulf of Mexico. Mar Pollut Bull 11:153–156
    [Google Scholar]
  17. Huber H., Thomm M., Konig H., Thies G., Stetter K. O. 1982; Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50
    [Google Scholar]
  18. Hungate R. E. 1969; A ro 11-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  19. Ivanov M. V., Belyaev S. S., Zyakun A. M., Bondars V., Laurinivicius K. 1983; Microbiological methane formation in oil field development. Geokhimiya 11:1647–1654
    [Google Scholar]
  20. Jeanthon C., Reysenbach A.-L, L'Haridon S., Gambacorta A., Pace N. R., Gibnat P., Prieur D. 1995; Thermotoga sub- terranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 211–232 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  22. L'Haridon S., Reysenbach A. L., Gibnat P., Prieur D., Jeanthon C. 1995; Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224
    [Google Scholar]
  23. Love C. A., Patel B. K., C„ Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16:244–251
    [Google Scholar]
  24. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The ribosomal database project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  25. Mesbah M., Premchandran U., Whitman W. B. 1989; Precise measurement of the G -I- C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  26. Nazina T. N., Rozanova E. P. 1978; Thermophilic sulfate- reducing bacteria from oil strata. Microbiology (English translation of Mikrobiologiya) 47:113–118
    [Google Scholar]
  27. Ng T. K., Weimer P. J., Gawel L. J. 1989; Possible non- anthropogenic origin of two methanogenic isolates from oil- producing wells in the San Miguelito field, Ventura county, California. Geomicrobiol J1185–192
    [Google Scholar]
  28. Ni S., Boone D. 1991; Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol 41:410–416
    [Google Scholar]
  29. Ni S., Woese C. R., Aldrich H. C., Boone D. R. 1994; Transfer of Methanolobus siciliae to the genus Methanosarcina naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int J Syst Bacteriol 44:357–359
    [Google Scholar]
  30. Nilsen R. K., Beeder J., Thorstenson T., Torsvik T. 1996; Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl Environ Microbiol 62:1793–1798
    [Google Scholar]
  31. Nilsen R. K., Torsvik T. 1996; Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731
    [Google Scholar]
  32. Obraztsova A. Y., Shipin O. V., Bezrukova L. V., Belyaev S. S. 1987a; Properties of the coccoid methylotrophic methanogen, Methanococcoides euhalobius sp. nov. Microbiology (English translation of Mikrobiologiya) 56:523–527
    [Google Scholar]
  33. Obraztsova A. Y., Tsyban V. E., Laurinavichus K. S., Bezrukova L. V., Belyaev S. S. 1987b; Biological properties of Methanosarcina not utilizing carbonic acid and hydrogen. Microbiology (English translation of Mikrobiologiya) 56:807–812
    [Google Scholar]
  34. Ollivier B., Caumette P., Garcia J.-L., Mah R. A. 1994; Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38
    [Google Scholar]
  35. Ollivier B., Cayol J.-L., Patel B. K. C., Magot M., Fardeau M.-L., Garcia J.-L. 1997; Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147:51–56
    [Google Scholar]
  36. Oremland R. S., Boone D. 1994; Methanolobus taylorii sp. nov., a new methylotrophic estuarine methanogen. Int J Syst Bacteriol 44:573–575
    [Google Scholar]
  37. Oremland R. S., King G. M. 1989; Methanogenesis in hypersaline environments. In Microbial Mats: Physiological Ecology of Benthic Microbial Communities pp. 180–190 Edited by Cohen Y., Rosenberg E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Paterek J. R., Smith P. H. 1988; Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38:122–123
    [Google Scholar]
  39. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Prensier G., Egan A., Garcia J.-L., Ollivier B. 1995; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil- producing well. Int J Syst Bacteriol 45:308–314
    [Google Scholar]
  40. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol Lett 113:81–86
    [Google Scholar]
  41. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. D., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89
    [Google Scholar]
  42. Romesser J. A., Wolfe R. S., Mayer F., Spiess E., Walther- Mauruschat A. 1979; Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121:147–153
    [Google Scholar]
  43. Rozanova E. P., Galushko A. S. 1990; Microflora of water of bacterial filters in the bottom-hole zone of injection wells in an oil reservoir under stagnant conditions. Microbiology (English translation of Mikrobiologiya) 58:533–537
    [Google Scholar]
  44. Rozanova E. P., Nazina T. N. 1979; Occurrence of thermophilic sulfate-reducing bacteria in oil-bearing strata of Apsheron and Western Siberia. Microbiology (English translation of Mikrobiologiya) 48:907–911
    [Google Scholar]
  45. Rozanova E. P., Nazina T. N., Galushko A. S. 1989; Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Microbiology (English translation of Mikrobiologiya) 57:514–520
    [Google Scholar]
  46. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458
    [Google Scholar]
  47. Stetter K. O. 1989; Genus II. Methanolobus. In Bergey's Manual of Systematic Bacteriology vol. 3 pp. 2205–2207 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  48. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance L. 1993; Hyperthermophilic Archaea are thriving in deep North Sea and Alaskan reservoirs. Nature 365:743–745
    [Google Scholar]
  49. Tardy-Jacquenod C., Magot M., Laigret F., Kaghad M., Patel B. K., G, Guezennec J., Matheron R., Caumette P. 1996; Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int J Syst Bacteriol 46:710–715
    [Google Scholar]
  50. Van Bruggen J. J. A., Zwart K. B., Hermans J. G. F., Van Hove E. M., Stumm C. K., Vogels G. D. 1986; Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus con- tortus Quennerstedt. Arch Microbiol 144:367–374
    [Google Scholar]
  51. Voordouw G., Armstrong S. M., Reimer M. F., Fouts B., Telang A. J., Shen Y., Gevertz D. 1996; Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629
    [Google Scholar]
  52. Widdel F., Rouvi&re P. E., Wolfe R. S. 1988; Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch Microbiol 150:477–481
    [Google Scholar]
  53. Wildgruber G., Thomm M., Kttnig H., Ober K., Ricchiuto T., Stetter K. O. 1982; Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methano- planaceae. Arch Microbiol 132:31–36
    [Google Scholar]
  54. Zabel H. P., Kfinig H., Winter J. 1984; Isolation and characterization of a new coccoid methanogen, Methano- genium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137:308–315
    [Google Scholar]
  55. Zellner G., Alten C., Stackebrandt E., Conway de Macario E., Winter J. 1987; Isolation and characterization of Methano- corpusculum parvum gen. nov., spec, nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 147:13–20
    [Google Scholar]
  56. Zellner G., Sleytr U. B., Messner P., Kneifel H., Winter J. 1990; Methanogenium liminatans spec, nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch Microbiol 153:287–293
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-821
Loading
/content/journal/ijsem/10.1099/00207713-48-3-821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error