1887

Abstract

A new bacterial species belonging to the genus is described on the basis of phenotypic characterization and sequence analysis of its 16S rRNA-encoding and gyrase B (gyrB) genes. This organism, isolated from shallowwater marine sediments derived from the Amazon River delta, is a Gramnegative, motile, polarly flagellated, facultatively anaerobic rod-shaped eubacterium and has a G+C content of 51.7 mol%. Strain SB2Bis exceptionally active in the anaerobic reduction of iron, manganese and sulfur compounds. SB2Bgrows optimally at 35 °C, with 1-3% NaCl and over a pH range of 7-8. Analysis of the 16S rDNA sequence revealed a clear affiliation between strain SB2Band members of the gamma subclass of the class . High similarity values were found with certain members of the genus , especially with , and this was supported by cellular fatty acid profiles and phenotypic characterization. DNA-DNA hybridization between strain SB2Band its phylogenetically closest relatives revealed low similarity values (24.6-42.7%) which indicated species status for strain SB2B. That SB2Brepresents a distinct bacterial species within the genus is also supported by analysis. Considering the source of the isolate, the name sp. nov. is proposed and strain SB2B(= ATCC 700329) is designated as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-965
1998-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-965.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-965&mimeType=html&fmt=ahah

References

  1. Aller R. C., Mackin J. E., Cox R. T. Jr 1986; Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont Shelf Res 6:263–289
    [Google Scholar]
  2. Aller R.G., Aller J. Y., Michalopoulos P., Green M. A. 1997; Biogeochemical processes in coastal mobile mud belts derived from the Amazon River. Abstract no. 81. Santa Fe, NM. American Society for Limnology and Oceanography
    [Google Scholar]
  3. Aller R., C„ Blair N. E., Xia Q., Rude P. D. 1996; Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Cont Shelf Res 16:753–786
    [Google Scholar]
  4. Allison M. A., Nittrouer C. A., Faria L. E. C. Jr 1995; Rates and mechanisms of shoreface progradation and retreat down-drift of the Amazon river mouth. Mar Geol 125:373–392
    [Google Scholar]
  5. Atkinson R. J., Posner A. M., Guirk J. P. 1967; Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. J Phys Chem 71:550–558
    [Google Scholar]
  6. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov., and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosa- pentaenoic acid (20:5co3) and grow anaerobically by dis- similatory Fe(III) reduction. IntJ Syst Bacteriol 47:1040–1047
    [Google Scholar]
  7. Burdige D. J., Nealson K. H. 1986; Chemical and microbiological studies of sulfide-mediated manganese reduction. Geochem J 4:365–368
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  9. Cole R. M., Popkin T. J. 1981; Electron microscopy. In Manual of Methods for General Bacteriology pp. 34–51 Edited by Gerhardt P., Murray R. G. E., Costilaw R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridisation from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  11. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  12. Fonnesbech-Vogel B., Jorgensen K., Christensen H., Olsen J. E., Gram L. 1997; Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis. Appl Environ Microbiol 63:2189–2199
    [Google Scholar]
  13. Hu£, V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  14. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  15. Jensen M. J., Tebo B. M., Baumann P., Mandel M., Nealson K. H. 1980; Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3:311–315
    [Google Scholar]
  16. Johnson J. L. 1981; Genetic characterization. In Manual of Methods for General Bacteriology pp. 450472 Edited by Gerhardt P., Murray R. G. E., Costilaw R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Kuehl S. A., Nittrouer C. A., DeMaster D. J. 1986; Nature of sediment accumulation on the Amazon continental shelf. Cont Shelf Res 6:209–225
    [Google Scholar]
  18. Lovely D. R., Phillips E. J. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  19. MacDonnell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182
    [Google Scholar]
  20. Makemson J. C., Fulayfil N. R., Landry W., Van Ert L. M., Wimpee C. F., Widder E. A., Case J. F. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  22. Meyers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321
    [Google Scholar]
  23. Moser D. P., Nealson K. H. 1996; Growth of the facultative anaeobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62:2100–2105
    [Google Scholar]
  24. Moss C. W., Lambert M. A., Merwin W. H. 1974; Comparison of rapid methods for analysis of bacterial fatty acids. Appl Microbiol 28:80–85
    [Google Scholar]
  25. Nealson K. H., Saffarini D. 1994; Iron and manganese anaerobic respiration. Annu Rev Microbiol 48:311–343
    [Google Scholar]
  26. Nealson K. H., Meyers C. R., Wimpee B. B. 1991; Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep Sea Res 38:S907–S920
    [Google Scholar]
  27. Owen R. J., Legros R. M., Lapage S. P. 1978; Base composition, size, and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138
    [Google Scholar]
  28. Ruimy R., Breittmayer V., ElBaze P., Lafay B., Boussemart O., Gauthier M., Christen R. 1994; Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences. Int J Syst Bacteriol 44:416–426
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Semple K. M., Westlake D. W. S. 1987; Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 35:925–931
    [Google Scholar]
  31. Simidu U., Kita-Tsukamoto K., Yasumoto T., Yotsu M. 1990; Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40:331–336
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  33. Stenstrom I.-M., Molin G. 1990; Classification of spoilage flora of fish, with special reference to Shewanella putrefaciens. J Appl Bacteriol 68:601–618
    [Google Scholar]
  34. Strunk O., Ludwig W. 1995; arb - a software environment for sequence data. Department of Microbiology Technical University of Munich; Munich, Germany:
    [Google Scholar]
  35. Swofford D. 1990; paup: phylogenetic analysis using parsimony, version 3.0. Computer program distributed by the Illinois Natural History Survey. Champaign; IL, USA:
    [Google Scholar]
  36. TrUper H. G., de' Clari L. 1997; Taxonomic note: necessary correction of specific epithets formed as substantives (nouns) ‘in apposition’. Int J Syst Bacteriol 47:908–909
    [Google Scholar]
  37. Venkateswaran K., Nakano H., Okabe T., Takayama K., Matsuda O., Hashimoto H. 1989; Occurrence and distribution of Vibrio spp., Listonella spp., and Clostridium botulinum in the Seto Inland Sea of Japan. Appl Environ Microbiol 55:559–567
    [Google Scholar]
  38. Wayne L. G., Brenner D. G., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  39. West P. A., Colwell R. R. 1984; Identification and classification overview. In Vibrios in the Environment pp. 285363 Edited by Colwell R. R. New York: Wiley;
    [Google Scholar]
  40. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  41. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-965
Loading
/content/journal/ijsem/10.1099/00207713-48-3-965
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error