1887

Abstract

A strictly anaerobic, Gram-positive, non-spore-forming bacterium was isolated from sewage sludge which grew on creatinine as sole source of carbon and energy. This new isolate, designated strain KRE 4, totally degraded creatinine via creatine, sarcosine and glycine to the products acetate, monomethylamine, ammonia and carbon dioxide. Growth on creatinine or creatine was selenium-dependent and stimulated by formate, indicating the involvement of a creatine reductase, sarcosine reductase and/or glycine reductase. This was substantiated by the fact that creatine, sarcosine and glycine were reduced by cell-free extracts. Growth on creatinine or creatine was also possible in the absence of formate, but with an increase in doubling time. The new bacterium occurred as rod-shaped cells, which exhibited an angular form (2-6 μm long and 0.7-1.1 μm wide) and showed motility by means of peritrichous flagella. The G+C content of the DNA was 30 mol%. Comparative 16S rRNA sequence analysis demonstrated that strain KRE 4represents a new subline within the genus . Due to its very restricted substrate spectrum and the inability of whole cells to utilize sarcosine and glycine as intermediates of creatine breakdown, this organism can be readily separated from currently described species of . Therefore, based on the phenotypic and phylogenetic distinctiveness of the new isolate, it is proposed that the bacterium be classified as a new species of the genus sp. nov. The type strain is KRE 4 (= DSM 6911).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-983
1998-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-983.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-983&mimeType=html&fmt=ahah

References

  1. Andreesen J. R. 1994; Acetate via glycine: a different form of acetogenesis.. In Acetogenesis, pp 568–629 Edited by Drake H. L. New York & London: Chapman & Hall;
    [Google Scholar]
  2. Andreesen J. R. 1992; The genus Eubacterium. . In The Prokaryotes, vol. 2, 2nd. edn pp 1914–1924 Edited by Balows A, Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  3. Appleyard G., Woods D. D. 1956; The pathway of creatine catabolism by Pseudomonas ovalis. J Gen Microbiol 14351–365
    [Google Scholar]
  4. Bergmeyer H. U. 1983 Methods for Enzymatic Analysis,, 3rd. edn Weinheim: Verlag Chemie;
    [Google Scholar]
  5. Blijenberg B. G., Brouwer H. J., Kuller T. J., Leenemann R., van Leeuwen C. J. M. 1994; Improvements in creatinine methodology: a critical assessment. Eur J Clin Chem Clin Biochem 32529–537
    [Google Scholar]
  6. Collins M. D., Shah H. N. 1986; Reclassification of Bac- teroides praeacutus Tissier (Holdeman and Moore) in a new genus, Tissierella, as Tissierellapraeacuta comb. nov.. Int J Syst Bacteriol 36461–463
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44812–826
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12387–395
    [Google Scholar]
  9. Dorn M., Andreesen J. R., Gottschalk G. 1978; Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J Bacteriol 13326–32
    [Google Scholar]
  10. Dubos R., Miller B. F. 1937; The production of bacterial enzymes capable of decomposing creatinine. J Biol Chem 121429–45
    [Google Scholar]
  11. van Eyk H. G., Vermaat H. J., Leijnse-Ybema H. J., Leijnse B. 1968; The conversion of creatinine by creatininase of bacterial origin. Enzymologia 34198–202
    [Google Scholar]
  12. Farrow J. A. E., Lawson P. A., Hippe H., Gauglitz U., Collins M. D. 1995; Phylogenetic evidence that the Gram-negative nonsporulating bacterium Tissierella (Bacteroides) praeacuta is a member of the Clostridium subphylum of the Gram-positive bacteria and description of Tissierella creatinini sp. nov.. Int J Syst Bacteriol 45436–440
    [Google Scholar]
  13. Felsenstein J. 1989; phylip - phylogeny interference package (version 3.2). Cladistics 5164–166
    [Google Scholar]
  14. Gauglitz U. 1988 Anaerober mikrobieller Abbau von Kreatin, Kreatinin und N-Methylhydantoin. PhD thesis, University of Göttingen
    [Google Scholar]
  15. Granderath K. 1988; Physiologische und enzymatische Untersuchungen zum Abbau von Aminosäuren und organischen Säuren durch Eubacterium acidaminophilum.. Diploma thesis, University of Göttingen
    [Google Scholar]
  16. Hermann M., Knerr H.-J., Mai N., Groß A., Kaltwasser H. 1992; Creatinine and N-methylhydantoin degradation in two newly isolated Clostridium species. Arch Microbiol 157395–401
    [Google Scholar]
  17. Holdemann L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual,, 4th. edn Virginia Polytechnic Institute and State University Blacksburg, VA: Virginia Polytechnic Institute Anaerobe Laboratory;
    [Google Scholar]
  18. Hormann K., Andreesen J. R. 1989; Reductive cleavage of sarcosine and betaine by Eubacterium acidaminophilum via enzyme systems different from glycine reductase. Arch Microbiol 15350–59
    [Google Scholar]
  19. Jaffé M. 1886; Über den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaktion des Kreatinins. Hoppe-Seyler's Z Physiol Chem 10391–400
    [Google Scholar]
  20. Kaplan A., Naugler S. 1974; Creatine hydrolase and creatinine amidinohydrolase. I. Presence in cell free extract of Arthrobacter ureafaciens. Mol Cell Biochem 39–15
    [Google Scholar]
  21. Kaplan A., Szabo L. L. 1974; Creatinine hydrolase and creatine amidinohydrolase: II Partial purification and properties. Mol Cell Biochem 317–25
    [Google Scholar]
  22. Kim J. M., Shimizu S., Yamada H. 1986a; Sarcosine oxidase involved in creatinine degradation in Alcaligenes denitrificans J9 and Arthrobacter spp. J5 and Jll. Agric Biol Chem 502811–2816
    [Google Scholar]
  23. Kim J. M., Shimizu S., Yamada H. 1986b; Purification and characterization of a novel enzyme, N-carbamoylsarcosine amidohydrolase, from Pseudomonasputida 77. J Biol Chem 26111832–11839
    [Google Scholar]
  24. Kopper P. H. 1947; An atypical strain of Pseudomonas aeruginosa. J Bacteriol 54359–362
    [Google Scholar]
  25. Kreimer S., Andreesen J. R. 1995; Glycine reductase of Clostridium litorale. Cloning, sequencing, and molecular analysis of the grdAB operon that contains two in-frame TGA codons for selenium incorporation. Eur J Biochem 234192–199
    [Google Scholar]
  26. ten Krooden E., Owens C. W. I. 1957; Creatinine metabolism by Clostridium welchii isolated from human faeces. Experientia 311270
    [Google Scholar]
  27. Lang E., Lang H. 1972; Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Fresenius Z Anal Chem 2608–10
    [Google Scholar]
  28. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5109–118
    [Google Scholar]
  29. Meyer M., Granderath K., Andreesen J. R. 1995; Purification and characterization of protein PB of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from Eubacterium acidaminophilum. Eur J Biochem 234184–191
    [Google Scholar]
  30. Miller B. F., Dubos R. 1936; Enzyme for decomposition of creatinine and its action of the ‘apparent creatinine’ of blood. Proc Soc Exp Biol Med 35335–337
    [Google Scholar]
  31. Möller B., Hippe H., Gottschalk G. 1986; Degradation of various amine compounds by mesophilic clostridia. Arch Microbiol 14585–90
    [Google Scholar]
  32. Nakajima M., Shirokane Y., Mizusawa K. 1980; A new amidinohydrolase, methylguanidine amidinohydrolase from Alcaligenes sp. N-42. FEBS Lett 11043–46
    [Google Scholar]
  33. Nakao T., Fujiwara S., Miyahara T. 1983; Simple methods for the determination of methylguanidine and guanidinosuccinic acid in biological fluids. In Guanidine, pp 33–38 Edited by Mori A., Cohen B. D., Lowenthal A. New York: Plenum;
    [Google Scholar]
  34. Schumacher G., Hilscher W., Möllering H., Siedel J., Buckel P. 1993; Engineering enzymes for clinical diagnosis. Ann Biol Clin Paris 51815–819
    [Google Scholar]
  35. Schumann J., Möllering H., Jaenicke R. 1993; Intrinsic stability and extrinsic stabilization of creatinase from Pseudomonas putida. Biol Chem Hoppe-Seyler 374427–434
    [Google Scholar]
  36. Shimizu S., Kim J. M., Yamada H. 1989; Microbial enzymes for creatinine assay: a review. Clin Chim Acta 185241–252
    [Google Scholar]
  37. Shimizu S., Kim J. M., Shinmen Y., Yamada H. 1986; Evaluation of two alternative metabolic pathways for creatinine degradation in microorganisms. Arch Microbiol 145322–328
    [Google Scholar]
  38. Siedel J., Deeg R., Seidel H., Möllering H., Staepels J., Gauhl H., Ziegenhorn J. 1988; Fully enzymatic colorimetric assay of serum and urine creatinine which obviates the need for sample blank measurements. Anal Lett 211009–1017
    [Google Scholar]
  39. Spormann A. M., Thauer R. K. 1988; Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Demonstration of enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch Microbiol 150374–380
    [Google Scholar]
  40. Stadtman T. C. 1970; Glycine reductase systems {Clostridium). Methods Enzymol 17A959–966
    [Google Scholar]
  41. Sugita O., Uchiyama K., Yamada T., Sato T., Okado M., Takeuchi K. 1992; Reference values of serum and urine creatinine, and of creatinine clearance by a new enzymatic method. Ann Clin Biochem 29523–528
    [Google Scholar]
  42. Szulmajster J. 1958a; Bacterial fermentation of creatinine. I. Isolation of N-methylhydantoin. J Bacteriol 75633–639
    [Google Scholar]
  43. Szulmajster J. 1958b; Bacterial degradation of creatinine. II. Creatinine desiminase. Biochim Biophys Acta 30154–163
    [Google Scholar]
  44. Szulmajster J. 1960; Le carbamyl-phosphate, intermédiaire dans la dégradation de la créatinine par les extraits enzymatiques d’Eubacterium sarcosinogenum. Biochim Biophys Acta 44173–175
    [Google Scholar]
  45. Szulmajster J., Kaiser P. 1960; Étude d’une nouvelle espèce anaérobie: Eubacterium sarcosinogenum nov. sp. Ann Inst Pasteur 98774–777
    [Google Scholar]
  46. Tomaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25125–128
    [Google Scholar]
  47. Tsuru D., Oka J., Yoshimoto T. 1976; Creatinine decomposing enzymes in Pseudomonas putida. Agric Biol Chem 401011–1018
    [Google Scholar]
  48. Uwajima T., Tereda O. 1977; Production, purification and crystallization of creatinine deiminase of Corynebacterium lilium. Agric Biol Chem 41339–344
    [Google Scholar]
  49. Uyeda K., Rabinowitz J. C. 1967; Metabolism of form- iminoglycine. Formiminotetrahydrofolate cyclodeaminase. J Biol Chem 1024–31
    [Google Scholar]
  50. Yamada H., Shimizu S., Kim J. M., Shinman Y, Sakai T. 1985; A novel metabolic pathway for creatinine degradation in Pseudomonas putida 77. FEMS Microbiol Lett 30337–340
    [Google Scholar]
  51. Yoshimoto T., Oka J., Tsuru D. 1976; Creatine amidino- hydrolase of Pseudomonas putida: crystallization and some properties. Arch Biochem Biophys 177508–515
    [Google Scholar]
  52. Zindel U., Freudenberg W., Rieth M., Andreesen J. R., Schnell J., Widdel F. 1988; Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch Microbiol 150254–266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-983
Loading
/content/journal/ijsem/10.1099/00207713-48-3-983
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error