1887

Abstract

A new anaerobic, proteolytic, moderately thermophilic bacterium, strain 3R, was isolated from a methanogenic mesophilic reactor treating protein-rich wastewater. The cells were Gram-negative, non-spore-forming, non-motile rods. The DNA base composition was 43 mol% G+C. The optimum pH and temperature for growth were 7·0 and 55 °C respectively. The bacterium fermented gelatin, casein, bovine albumin, peptone and yeast extract. Glucose, fructose, sucrose, maltose and starch were poorly fermented. The major fermentation products from glucose were acetate, CO and H and, from gelatin, propionate was also detected. Growth on glucose was stimulated by thiosulfate, which was reduced to sulfide. Sulfate and nitrate were not reduced. 16S rRNA gene analysis revealed that the isolated bacterial strain was phylogenetically related to (96·3% sequence similarity), the only known species within the genus. DNA-DNA hybridization analysis demonstrated a very low level of homology, indicating that the isolated strain and were not related at species level. Therefore, it is proposed to classify the described strain in the genus as a new species, . The type strain of is strain 3R (= DSM 11748).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1297
1998-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1297.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1297&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  2. Brock F. M., Forsberg C. W., Buchanan-Smith J. G. 1982; Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl Environ Microbiol 44:561–569
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Willens A., Cordoba J. J., Fer-nandez-Garayzabal J., Garcia P., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826
    [Google Scholar]
  4. Engle M., Li Y., Woese C., Wiegel J. 1995; Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Bacteriol 45:454–461
    [Google Scholar]
  5. Engle M., Li Y., Rainey F., DeBlois S., Mai V., Reichert A., Mayer F., Messner P., Wiegel J. 1996; Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033
    [Google Scholar]
  6. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019
    [Google Scholar]
  7. Felsenstein J. 1993; phylip (Phylogeny Inference Package) version 3.5p. Distributed by the author. Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  8. Gregersen L. 1978; Rapid method for distinction of gram negative from gram positive bacteria. J Appl Biochem 5:123–126
    [Google Scholar]
  9. Johnson J. L. 1991; DNA reassociation experiments. In Nucleic Acid Techniques in Bacterial Systematics21–44 Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  10. Johnson J. L. 1994; Similarity analysis of rRNAs. In Methods for General and Molecular Bacteriology683–700 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Kersters I., Maestrojuan G. M., Torck U., Vancanneyt M., Kersters K., Verstraete W. 1994; Isolation of Coprothermobacter proteolyticus from an anaerobic digest and futher characterization of the species. Syst Appl Microbiol 17:289–295
    [Google Scholar]
  12. Lee Y. E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacter xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov., reclassification of Thermoanaerobium brokii, Clostridium thermosulfurogenes, and Clostridium thermohydro-sulfuricum E100-69 as Thermoanaerobacter brokii comb, nov., Thermoanaerobacterium thermosulfurigenes comb, nov., and Thermoanaerobacter thermohydrosulfuricus comb, nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolycus . Int J Syst Bacteriol 43:41–51
    [Google Scholar]
  13. Lettinga G. 1995; Anaerobic digestion and wastewater treatment systems. Antonie Leeuwenhoek 67:3–28
    [Google Scholar]
  14. Mclnerney M. J. 1988; Anaerobic hydrolysis and fermentation of fats and proteins. In Biology of Anaerobic Microorganisms373–415 Zehnder A. J. B. New York: Wiley;
    [Google Scholar]
  15. Maidak B. L., Larse M. J., McCaughey R., Overbeek G. J., Fogel K., Blandy J., Woese C. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  16. Mesbah M., Premanchandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  17. Muxí L., Zunino L., Tarlera S., Soubes M. 1992; Characterization of a methanogenic sludge to be used as inoculum for a high-rate reactor. World J Microbiol Biotechnol 8:632–634
    [Google Scholar]
  18. Ollivier B. M., Mah R. A., Ferguson T. J., Boone D. R., Garcia J. L., Robinson R. 1985; Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int J Syst Bacteriol 35:425–428
    [Google Scholar]
  19. Örlygsson J. 1994; The role of inter species hydrogen transfer on the thermophilic protein and amino acid metabolism. PhD thesis Swedish University of Agricultural Sciences;
    [Google Scholar]
  20. Rainey F. A., Stackebrandt E. 1993; Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoetylicus (Ben-Bassat and Ziekus 1981) comb, nov., description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides proteolyticus as Coprothermobacter proteolyticus (Ollivier et al., 1985) comb. nov. Int J Syst Bacteriol 43:857–859
    [Google Scholar]
  21. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. Int J Syst Bacteriol 175:4772–4778
    [Google Scholar]
  22. Rand M. C., Greenberg A. E., Taras M. J. 1975; Sulfide, methylene blue method. In Standard Methods for the Examination of Water and Wastewater, 14.503–505 Washington, DC: American Public Health Association, American Water Works Association and Water Pollution Control Federation;
    [Google Scholar]
  23. Ravot G., Ollivier B., Magot M., Patel B. K. C., Crolet J. L., Fardeau M.-L., Garcia J. L. 1995; Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales . Appl Environ Microbiol 61:2053–2055
    [Google Scholar]
  24. Ravot G., Ollivier B., Patel B. K. C., Magot M., Garcia J. L. 1996; Emended description of Thermosipho africanus as a carbohydrate fermenting species using thiosulfate as an electron acceptor. Int J Syst Bacteriol 46:321–323
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology611–651 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Speece R. E. 1996 Anaerobic Biotechnology for Industrial Wastewaters3–6 Nashville, TN: Vanderbilt University Press.;
    [Google Scholar]
  28. Stackebrandt E., Goebel M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  29. Tarlera S., Muxí L., Soubes M., Stams A. J. M. 1997; Caloramator proteoclasticus sp. nov., a new moderately thermophilic anaerobic proteolytic bacterium. Int J Syst Bacteriol 47:651–656
    [Google Scholar]
  30. Toda Y., Saiki T., Uozumi T., Beppu T. 1988; Isolation and characterization of a protease-producing, thermophilic anaerobic bacterium, Thermobacteroides leptospartum sp. nov. Agric Biol Chem 52:1339–1344
    [Google Scholar]
  31. Touzel J. P., Albagnac G. 1983; Isolation and characterization of Methanococcus mazeii strain MC3. FEMS Microbiol Lett 16:241–245
    [Google Scholar]
  32. Van Lier J. B., Hulsbeek J., Stams A. J. M., Lettinga G. 1993; Temperature susceptibility of thermophilic methanogenic sludge: implications for reactor start-up and operation. Bio-resource Technol 43:227–235
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R. 9 others 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  34. Wiegel J. 1992; The obligately anaerobic thermophilic bacteria. In Thermophilic Bacteria105–184 Kristjansson J. K. Boca Raton, FL: CRC Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1297
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1297
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error