1887

Abstract

A psychrophilic bacterium, previously described as sp. strain ABE-1, has been reassigned by phenotypic characterization, chemotaxonomic analysis and 16S rRNA phylogenetic analysis. The organism was curved rods and it could reduce nitrate to nitrite and hydrolyse gelatin and DNA, but not chitin. NaCl was required for growth. This strain was susceptible to the vibriostatic compound 0/129. The major isoprenoid quinone was ubiquinone-8 and the DNA G+C content was 39·4 mol%. The whole-cell fatty acids comprised saturated and monounsaturated fatty acids with 10–18 C atoms; saturated and monounsaturated C fatty acids were predominant. Strain ABE-1 contained the unique -unsaturated fatty acid, 9-trans-hexadecenoic acid. Although strain ABE-1 has been identified as a species, the strain did not ferment glucose. Phylogenetic analysis based on 16S rRNA sequencing indicated that strain ABE-1 was more closely related to species than to species. However, strain ABE-1 differed from other reported species in terms of phylogenetic position, some phenotypic characteristics, chemotaxonomic analysis and relatedness by DNA–DNA hybridization. Accordingly, the name is proposed. The type strain is ABE-1 ( = JCM 10085).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1357
1998-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1357.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1357&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita M., Itoh T., Katayama Y., Kuraishi H., Yamasato K. 1992; Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol 138:2275–2281
    [Google Scholar]
  2. Barrow G. L., Feltham R. K. A. 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Baumann P., Ralph H., Schubert W. 1984; The Vibrionaceae. In Bergey’s Manual of Systematic Bacteriology 1516–550 Krieg N. R., Holt J. H. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Skerratt J. H. 1997a; Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, mero-mictic lakes. Microbiology 143:1451–1459
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Brown J. L., Nichols P. D., McMeekin T. A. 1997b; Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47:670–677
    [Google Scholar]
  6. Bowman J. P., McCammon S. A., Brown M. V., Nichols D. S., McMeekin T. A. 1997c; Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078
    [Google Scholar]
  7. Bozal N., Tudela E., Rosselló-Mora R., Lalucat J., Guinea J. 1997; Pseudoalteromonas antaretica sp. nov., isolation from an Antarctic coastal environment. Int J Syst Bacteriol 47:345–351
    [Google Scholar]
  8. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad SciUSA 75:4801–4805
    [Google Scholar]
  9. Carbon P., Ehresmann C., Ehresmann B., Ebel J. P. 1979; The complete nucleotide sequence of the ribosomal 16-S RNA from Escherichia coli. Eur J Biochem 100:399–410
    [Google Scholar]
  10. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structure types in bacterial and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  11. D’aoust J. Y., Kunshner D. J. 1972; Vibrio psychroerythrus sp. n. : classification of the psychrophilic marine bacterium, NRC 1004. J Bacteriol 111:340–342
    [Google Scholar]
  12. DeLong E. F., Franks D. G., Alldredge A. L. 1993; Phylogenetic diversity of aggregate vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934
    [Google Scholar]
  13. DeLong E. F., Franks D. G., Yayanos A. A. 1997; Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108
    [Google Scholar]
  14. Deming J. W., Somers L. K., Straube W. L., Swartz D. G., Macdonell M. T. 1988; Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160
    [Google Scholar]
  15. Dobson S. J., Franzmann P. D. 1996; Unification of genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558
    [Google Scholar]
  16. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229
    [Google Scholar]
  17. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas, Shewanella and Montella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761
    [Google Scholar]
  18. Gosink J. J., Staley J. T. 1995; Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl Environ Microbiol 61:3486–3489
    [Google Scholar]
  19. Gounot A.-M. 1976; Effects of temperature on the growth of psychrophilic bacteria from glaciers. Can J Microbiol 22:839–846
    [Google Scholar]
  20. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994 Bergey’s Marmai of Determinative Bacteriology, 9th. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Horikoshi K., Grant W. D. 1991 Superbugs Tokyo: Japan Scientific Societies Press;
    [Google Scholar]
  22. Irgens R. L., Gosink J. J., Staley J. T. 1996; Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46:822–826
    [Google Scholar]
  23. Ishii A., Imagawa S., Fukunaga N., Sasaki S., Minowa O., Mizuno Y., Shiokawa H. 1987; Isozymes of isocitrate dehydrogenase from an obligate psychrophilic bacterium, Vibrio sp. strain ABE-1: purification, and modulation of activities by growth conditions. J Biochem 102:1489–1498
    [Google Scholar]
  24. Ishii A., Suzuki M., Sahara T., Takada Y., Sasaki S., Fukunaga N. 1993; Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol 175:6873–6880
    [Google Scholar]
  25. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  26. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  27. MacDonell M. T., Colwell R. R. 1985; Phylogeny of Vibrionaceae and recommendation for two genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182
    [Google Scholar]
  28. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218
    [Google Scholar]
  29. Morita R. Y. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167
    [Google Scholar]
  30. Morita R. Y., Haight R. D. 1964; Temperature effects on the growth of an obligate psychrophilic marine bacterium. Limnol Oceanogr 9:102–106
    [Google Scholar]
  31. Moyer C. L., Dobbs F. C., Karl D. M. 1995; Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii. Appl Environ Microbiol 61:1555–1562
    [Google Scholar]
  32. Okuyama H., Sasaki S., Higashi S., Murata N. 1990; A trans-unsaturated fatty acid in a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol 111:3515–3518
    [Google Scholar]
  33. Okuyama H., Okajima N., Sasaki S., Higashi S., Murata N. 1991; The cis/trans isomerization of the double bond of fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim Biophys Acta 1084:13–20
    [Google Scholar]
  34. Pacha R. E. 1968; Characteristics of Cytophaga psychrophila (Borg) isolated during outbreaks of bacterial cold-water disease. Appl Microbiol 21:97–101
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  36. Takada Y., Ochiai T., Okuyama H., Nishi K., Sasaki S. 1979; An obligately psychrophilic bacterium isolated on the Hokkaido coast. J Gen Appl Microbiol 25:11–19
    [Google Scholar]
  37. Takada Y., Fukunaga N., Sasaki S. 1981; Temperature-dependence and distribution of NADH dehydrogenase in a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Gen Appl Microbiol 27:327–337
    [Google Scholar]
  38. Takada Y., Fukunaga N., Sasaki S. 1989a; Coupling site of the respiration-dependent sodium pump in a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Gen Appl Microbiol 35:33–42
    [Google Scholar]
  39. Takada Y., Fukunaga N., Sasaki S. 1989b; Identification of respiratory quinones from a psychrophilic bacterium, Vibrio sp. strain ABE-1. Agric Biol Chem 53:3047–3049
    [Google Scholar]
  40. Takada Y., Fukunaga N., Sasaki S. 1991; Na+-driven ATP synthesis of a psychrophilic marine bacterium, Vibrio sp., strain ABE-1. FEMS Microbiol Lett 82:225–228
    [Google Scholar]
  41. Tamaoka J., Komagata K. 1984; Determination of base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  43. Van Landschoot A., De Ley J. 1983; Intra- and intergeneric similarities of the rRNA cistron of Alteromonas, Marinomonas (gen. nov.) and some other Gram-negative bacteria. J Gen Microbiol 129:3057–3074
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1357
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error