1887

Abstract

The group comprises the four valid species and Some isolates of . are known to be psychrotolerant (growth at 7 °C or below). Here, specific sequence differences are described between the 16S rDNA, the 23S rDNA, the 16S–23S rDNA spacer region and the genes of the major cold-shock protein homologue in a variety of psychrotolerant and mesophilic . and . strains. Randomly amplified polymorphic DNA analysis using three different primers clearly separated psychrotolerant strains of both species from the rest of the . group, as did inverse PCR patterns of the rDNA operons. These data strongly support a hitherto unrecognized fifth sub-group within the . species group comprising psychrotolerant, but not mesophilic, . strains. Despite the latter finding, the DNA sequences investigated exhibited a high degree of sequence similarity indicating a close relationship between the species of the . group. Considering the unusual importance of . in both food poisoning and food spoilage and to avoid merging all species of the group, a new species, sp. nov., comprising psychrotolerant ‘’ strains, is proposed. Isolates of the new species grow at 4–7°C but not at 43°C and can be identified rapidly using rDNA or targeted PCR. The type strain is . WSBC 10204(= DSM 11821).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1373
1998-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1373.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1373&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Dorsch M., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthrucis. Bacillus cereus and related species on the basis of reverse transcriptase sequencing of 16S rDNA. Int J Syst Bacterial 41:343–346
    [Google Scholar]
  2. Ash C., Collins M. D. 1992; Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing.. FEMS Microbiol Lett 94:75–80
    [Google Scholar]
  3. Battisti L., Green B. D., Thome C. B. 1985; Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis . J Bacteriol 162:543–550
    [Google Scholar]
  4. Bell J. A., Friedman S. B. 1994; Genetic structure and diversity within local population of Bacillus mycoides . Evolution 48:1698–1714
    [Google Scholar]
  5. Bourque S. N., Valero J. R., Lavoie M. C., Levesque R. C. 1995; Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Appl Environ Microbiol 61:1623–1626
    [Google Scholar]
  6. Brousseau R., Saint-Onge A., Prefontaine G., Masson L., Cabana J. 1993; Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl Environ Microbiol 59:114–119
    [Google Scholar]
  7. Carlson C. R., Kolsto A.-B. 1993; A complete physical map of a Bacillus thuringiensis chromosome.. J Bacteriol 175:1053–1060
    [Google Scholar]
  8. Carlson C. R., Cougant D. A., Kolsto A.-B. 1994; Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725
    [Google Scholar]
  9. Carlson C. R., Johansen T., Kolsto A.-B. 1996; The chromosome map of Bacillus thuringiensis subsp. canadiensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol Lett 141:163–167
    [Google Scholar]
  10. Casanova J.-L., Pannetier C., Jaulin C., Kourilsky P. 1990; Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. Nucleic Acids Res 18:4028
    [Google Scholar]
  11. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ration determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  12. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergeys Manual of Systematic Bacteriology 21105–1139 Sneath P. H. A., Mair N.S., Sharpe M. E., Holt J. G. Baltimore: Williams and Wilkins;
    [Google Scholar]
  13. Condon C., Squires C., Squires C. L. 1995; Control of rRNA transcription in Escherichia coli . Microbiol Rev 59:623–645
    [Google Scholar]
  14. Daffonchio D., Borin S., Frova G., Manachini P. L., Sorlini C. 1998; PCR fingerprinting of whole genomes : the spacers between the 16S and 23S rRNA genes and of intergeneric tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis . Int J Syst Bacteriol 48:107–116
    [Google Scholar]
  15. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  16. Dietrich R., Märtlbauer E. 1997 Personal communication
    [Google Scholar]
  17. Francis K. P., Stewart G. S. A. B. 1997; Detection and speciation of bacteria through PCR using universal major cold shock protein primer oligomers. J Ind Microbiol Biotechnol 19:286–293
    [Google Scholar]
  18. Francis K. P., Mayr R., von Stetten F., Stewart G. S. A. B., Scherer S. Discrimination of psychrotolerant and meso-philic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes. Appl Environ Microbiol 64:3525–3529
    [Google Scholar]
  19. Gonzales J. M. Jr, Brown B. J., Carlton B. C. 1982; Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of Bacillus thuringiensis and Bacillus cereus . Proc Natl Acad Sci USA 79:6951–6955
    [Google Scholar]
  20. Gordon R. E., Haynes W. C., Pang C. H. -N. 1973 The Genus Bacillus Washington, DC: US Department of Agriculture;
    [Google Scholar]
  21. Gürtler V., Stanisich V. A. 1996; New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16
    [Google Scholar]
  22. Harrell L. J., Andersen G. L., Wilson K. H. 1995; Genetic variability of Bacillus anthracis and related species. J Clin Microbiol 33:1847–1850
    [Google Scholar]
  23. Henderson I., Dongzheng Y., Turnbull P. C. B. 1995; Differentiation of Bacillus anthracis and other ‘Bacillus cereus group’ bacteria using IS231-derived sequences. FEMS Microbiol Lett 128:113–118
    [Google Scholar]
  24. Henderson I., Duggleby C. J., Turnbull P. C. B. 1994; Differentiation of Bacillus anthracis from other Bacillus cereus group bacteria with the PCR. Int J Syst Bacteriol 44:99–105
    [Google Scholar]
  25. Jay J. M. 1987; The tentative recognition of psychrotrophic Gram-negative bacteria in 48 h by their surface growth at 10 °C. Int J Food Microbiol 4:25–32
    [Google Scholar]
  26. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis . Microbiol Immunol 22:639–641
    [Google Scholar]
  27. Larsen H. D., Joergensen K. 1997; The occurrence of Bacillus cereus in Danish pasteurized milk. Int J Food Microbiol 34:179–186
    [Google Scholar]
  28. Leblond-Bourget N., Philippe H., Mangin I., Decaris B. 1996; 16S rDNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intra-specific Bifidobacterium phylogeny. Int J Syst Bacteriol 46:102–111
    [Google Scholar]
  29. Lindsay J. A. 1995; Is thermophily a transferrable property in bacteria?. Crit Rev Microbiol 21:165–174
    [Google Scholar]
  30. Makino S. I., linuma-Okada Y., Maruyama T., Ezaki T., Sasakawa C., Yoshikawa M. 1993; Direct detection of Bacillus anthracis DNA in animals by polymerase chain reaction. J Clin Microbiol 31:547–551
    [Google Scholar]
  31. Margesin R., Schinner F. 1994; Properties of cold-adapted micro-organisms and their potential role in biotechnology. J Biotechnol 33:1–14
    [Google Scholar]
  32. Mayr B., Kaplan T., Lechner S., Scherer S. 1996; Identification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC10201. J Bacteriol 178:2916–2925
    [Google Scholar]
  33. Mayr R. 1997; Kältetolerante Bacillusarten in pasteurisierter Trinkmilch : Flora, Verderbsanalysen und Phagentypisierung von Bacillus cereus. PhD thesis, Technische Universität München
    [Google Scholar]
  34. Meer R. R., Baker J., Bodyfelt F. W., Griffiths M. W. 1991; Psychrotrophic Bacillus spp. in fluid milk products: a review. J Food Protein 54:969–979
    [Google Scholar]
  35. Morita R. Y. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167
    [Google Scholar]
  36. Nakamura L. K., Jackson M. A. 1995; Clarification of the taxonomy of Bacillus mycoides . Int J Syst Bacteriol 45:46–49
    [Google Scholar]
  37. Niebylski M. L., Schrumpf M. E., Burgdorfer W., Fischer E. R., Gage K. L., Schwan T. G. 1997; Rickettsia peacockii sp. nov., a new species infecting wood ticks, Dermacentor andersoni in Western Montana. Int J Syst Bacteriol 47:446–452
    [Google Scholar]
  38. Perani M., Bishop A. H., Vaid A. 1998; Prevalence of β-exotoxin, diarrhoeal toxin and specific δ-endotoxin in natural isolates of Bacillus thuringiensis . FEMS Microbiol Lett 160:55–60
    [Google Scholar]
  39. Priest F. G., 8i Alexander B. 1988; A frequency matrix for probabilistic identification of some bacilli. J Gen Microbiol 134:3011–3018
    [Google Scholar]
  40. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus . J Gen Microbiol 134:1847–1882
    [Google Scholar]
  41. Russel N. J. 1990; Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci 326:595–611
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schraft H., Stelle M., McNab B., Odumeru J., Griffiths M. W. 1996; Epidemiological typing of Bacillus spp. isolated from food. AppI Environ Microbiol 62:4229–4232
    [Google Scholar]
  44. Somerville H. J., Jones M. L. 1972; DNA competition experiments within the Bacillus cereus group of bacilli. J Gen Microbiol 73:257–261
    [Google Scholar]
  45. Stackebrandt E., Liesack W. 1992; The potential of rDNA in identification and diagnostics. In Nonradioactive Labeling and Detection ofBiomolecules232–239 Kessler C. Berlin: Springer;
    [Google Scholar]
  46. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rDNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  47. Stephan R. 1996; Randomly amplified polymorphic DNA (RAPD) assay for genomic fingerprinting of Bacillus cereus isolates. Int J Food Microbiol 31:311–316
    [Google Scholar]
  48. Turnball P. C. B., Kramer J. M. 1991; Bacillus. In Manual of Clinical Microbiology, 5.296–303 Balows A., Hausler W. J. Jr, Herrmann K. L., Isenberg H. D., Shadomy H. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  49. Van der Giessen J. N. B., Haring R. M., van der Zeijst B. A. M. 1994; Comparison of the 23S ribosomal RNA genes and the spacer region between the 16S and 23S rDNA genes of the closely related Mycobacterium avium and Mycobacterium paratuberculosis and the fast-growing Mycobacterium phlei . Microbiology 140:1103–1108
    [Google Scholar]
  50. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  51. von Stetten F., Francis K. P., Lechner S., Neuhaus K., Scherer S. Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA. J Microbiol Methods in press
    [Google Scholar]
  52. Wayne L. G., Brenner D. J., Colwell R. R. & 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  53. Wilson K. H. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology2.4.1–2.4.2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhls K. New York: Wiley;
    [Google Scholar]
  54. Woodborn M. A., Yousten A. A., 8t Hilu K. H. 1995; Random amplified polymorphic DNA fingerprinting of mosquito-pathogenic and non-pathogenic strains of Bacillus sphaericus . Int J Syst Bacteriol 45:212–217
    [Google Scholar]
  55. Wunschel D., Fox K. F., Black G. E., 8. Fox A. 1994; Discrimination among the Bacillus cereus group, in comparison to B subtilis by structural carbohydrate profiles and ribosomal RNA spacer region PCR. Syst Appl Microbiol 17:625–635
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1373
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1373
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error