1887

Abstract

A syntrophic propionate-oxidizing bacterium, strain MPOB, was isolated from a culture enriched from anaerobic granular sludge. It oxidized propionate syntrophically in co-culture with the hydrogen- and formate-utilizing , and was able to oxidize propionate and other organic compounds in pure culture with sulfate or fumarate as the electron acceptor. Additionally, it fermented fumarate. 16S rRNA sequence analysis revealed a relationship with and . The G+C content of its DNA was 60·6 mol %, which is in the same range as that of other species. DNA-DNA hybridization studies showed less than 26% hybridization among the different genomes of species and strain MPOB. This justifies the assignment of strain MPOB to the genus as a new species. The name is proposed; strain MPOB (= DSM 10017) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1383
1998-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1383.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1383&mimeType=html&fmt=ahah

References

  1. Boone D. R., Bryant M. P. 1980; Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov., gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632
    [Google Scholar]
  2. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695
    [Google Scholar]
  3. Harmsen H. J. M., Wullings B., Akkermans A. D. L., Ludwig W., Stams A. J. M. 1993; Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240
    [Google Scholar]
  4. Harmsen H. J. M., Kengen H. M. P., Akkermans A. D. L., Stams A. J. M. 1995; Phylogenetic analysis of two syn- trophic propionate-oxidizing bacteria in enrichment cultures. Syst Appl Microbiol 18:67–73
    [Google Scholar]
  5. Hungate R. E. 1969; A roll-tube method for cultivation of strict anaerobes. Methods Microbiol 3b:117–132
    [Google Scholar]
  6. Johnson J. L. 1981; Genetic characterization. Manual of Methods for General Microbiology450–475 Gerhardt P., Murray G. E. Washington: DC: American Societx for Microbiology;
    [Google Scholar]
  7. Kengen S. W. M., Stams A. J. M. 1994; Formation of l-alaninc as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 161:168–175
    [Google Scholar]
  8. Klijn N., Bovie C., Dommes J., Hoolwerf J. D., van der Waals C. B., Weerkamp A. H., Nieuwenhof F. F. J. 1994; Identification of Clostridium tyrobutyricum and related species using sugar fermentation, organic acid formation and DNA probes based on specific 16S rRNA sequences. Syst Appl Microbiol 17:249–256
    [Google Scholar]
  9. Mesbah M., Premachandran U., Whitman B. W. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by highperformance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  10. Oude Elferink S. J. W. H., Maas R. N., Harmsen H. J. M., Stams A. J. M. 1995; Desulforhabdus amnigenus gen. nov., sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch Microbiol 164:119–124
    [Google Scholar]
  11. Plugge C. M., Dijkema C., Stams A. J. M. 1993; Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76
    [Google Scholar]
  12. Stams A. J. M., van Dijk J. B., Dijkema C., Plugge C. M. 1993; Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
    [Google Scholar]
  13. Tamaoka J., Komagata J. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  14. Van de Peer Y., de Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  15. Van Kuijk B. L. M., Stams A. J. M. 1995; Sulfate reduction by a syntrophic propionate-oxidizing bacterium. Antonie Leeuwenhoek 68:293–296
    [Google Scholar]
  16. Visuvanathan S., Moss M. T., Stanford J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10:59–64
    [Google Scholar]
  17. Wallrabenstein C., Hauschild E., Schink B. 1994; Pure culture and cytological properties of Syntrophobacter wolinii. FEMS Microbiol Lett 123:249–254
    [Google Scholar]
  18. Wallrabenstein C., Hauschild E., Schink B. 1995; Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352
    [Google Scholar]
  19. Zellner G., Busmann A., Rainey F. A., Diekmann H. 1996; A syntrophic propionate-oxidizing, sulfate-reducing bacterium from a fluidized bed reactor. Syst Appl Microbiol 19:414–420
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1383
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1383
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error