1887

Abstract

Phylogenetic analyses based on 16S rDNA sequences and genomic DNA-DNA relatedness showed that the sulphur-oxidizing facultative chemolithotroph was closely related to members of the genus , which is a group of strictly aerobic, heterotrophic acidophiles now categorized into aerobic photosynthetic bacteria. Lipophilic pigment analyses revealed that zinc-chelated bacteriochlorophyll a and carotenoids occurred in appreciable amounts in and all established species of the genus PCR experiments showed that as well as species contained genes, encoding the photosynthetic reaction centre proteins and the core light-harvesting complex of the purple bacteria. There were high similarities between and species in the primary structure of their reaction centre proteins deduced from the nucleotide sequence data. The phylogenetic tree of the reaction centre proteins was in agreement with the 16S rDNA sequence-based phylogenetic tree in the relationship between and species and between the cluster and other purple photosynthetic bacteria. Based on these results, together with previous phylogenetic and phenotypic information, it is proposed to reclassify (Guay and Silver) Harrison 1983 as comb. nov. The type strain is ATCC 27807(= DSM 700).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1389
1998-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1389.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1389&mimeType=html&fmt=ahah

References

  1. Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. 1987; Structure of the reaction center from Rhodobacter sphaeroides R-26: the co factors. Proc Natl Acad Sci USA 84:5730–5734
    [Google Scholar]
  2. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  3. Deisenhofer J., Epp O., Sinning I., Michel H. 1995; Crystallographic refinement at 2-3 A resolution and refined model of the photosynthetic reaction centre from Rhodo-pseudomonas viridis. J Mol Bio I 246:429–457
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  5. Guay R., Silver M. 1975; Thiobacillus acidophilus sp. nov. ; isolation and some physiological characteristics. Can J Microbiol 21:281–288
    [Google Scholar]
  6. Harrison A. P. Jr 1983; Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilium cryptum Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev. Int J Syst Bacteriol 33:211–217
    [Google Scholar]
  7. Harrison A. P. Jr 1984; The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38:265–292
    [Google Scholar]
  8. Harrison A. P. Jr 1989; Genus Acidiphilium Harrison 1981, 211AL. Bergeys Manual of Systematic Bacteriology 31863–1868 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Hiraishi A., Kitamura H. 1984; Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull Jpn Soc Sci Fish 50:1929–1937
    [Google Scholar]
  10. Hiraishi A., Hoshino Y., Satoh T. 1991; Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “ Rhodocyclus gelatinosus-Mke” group. Arch Microbiol 155:330–336
    [Google Scholar]
  11. Hiraishi A., Shin Y. K., Ueda Y., Sugiyama J. 1994; Automated sequencing of PCR-amplified 16S rDNA on “Hydrolink” gels. J Microbiol Methods 19:145–154
    [Google Scholar]
  12. Hiraishi A., Kamagata Y., Nakamura K. 1995; Polymerase chain reaction amplification and restriction fragment length polymorphism analysis of 16S rRNA genes from methanogens. J Ferment Bioeng 79:523–529
    [Google Scholar]
  13. Katayama-Fujimura Y., Tsuzaki N., Kuraishi H. 1982; Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. J Gen Microbiol 128:1599–1611
    [Google Scholar]
  14. Katayama-Fujimura Y., Enokizono Y., Kaneko T., Kuraishi H. 1983; Deoxyribonucleic acid homologies among species of the genus Thiobacillus. J Gen Appl Microbiol 29:287–295
    [Google Scholar]
  15. Katayama-Fujimura Y., Kawashima I., Tsuzaki N., Kuraishi H. 1984; Polyhedral inclusion bodies (carboxysomes) in Thiobacillus species with reference to the taxonomy of the genus Thiobacillus. J Gen Appl Microbiol 30:211–222
    [Google Scholar]
  16. Kelly D. P., Harrison A. P. Jr 1989; Genus Thiobacillus Beijerinck 1904, 597AL. Ber gey s Manual of Systematic Bacteriology 31842–1858 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  18. Kishimoto N., Fukaya F., Inagaki K., Sugio T., Tanaka H., Tano T. 1995a; Distribution of bacteriochlorophyll a among aerobic and acidophilic bacteria and light-enhanced CO2-incorporation in Acidiphilium rubrum. FEMS Microbiol Ecol 16:291–296
    [Google Scholar]
  19. Kishimoto N., Kosako Y., Wakao N., Tano T., Hiraishi A. 1995b; Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium. Syst Appl Microbiol 18:85–91
    [Google Scholar]
  20. Kusukawa N., Uemori T., Asada K., Kato I. 1990; Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction. BioTechniques 9:66–72
    [Google Scholar]
  21. Lane D. J. 1991; 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics115–175 Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  22. Lane D. J., Harrison A. P. Jr, Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. 1992; Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278
    [Google Scholar]
  23. Lane D. J., Stahl D. A., Olsen G. J., Heller D. J., Pace N. R. 1985; Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol 163:75–81
    [Google Scholar]
  24. Lobos J. H., Chisolm T. E., Bopp L. H., Holms D. S. 1986; Acidiphilium organovorum sp. nov., an acidophilic heterotroph isolated from a Thiobacillus ferrooxidans culture. Int J Syst Bacteriol 36:139–144
    [Google Scholar]
  25. Marchuk D., Drumm M., Saulino A., Collins F. S. 1991; Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19:1154
    [Google Scholar]
  26. Markosyan G. E. 1973; A new mixotrophic sulfur bacterium developing in acid media, Thiobacillus organoparus sp. n. Dokl AkadNauk SSSR 211:1205–1208 in Russian
    [Google Scholar]
  27. Marmur J. 1961; A procedure for the isolation of deoxy-ribonucleic acid from micro-organisms. J Mol Biol 3:208–218
    [Google Scholar]
  28. Mason J., Kelly D. P., Wood A. P. 1987; Chemolithotrophic and autotrophic growth of Thermothrix thiopara and some thiobacilli on thiosulphate and polythionates, and a reassessment of the growth yields of Thx thiopara chemostat culture. J Gen Microbiol 133:1249–1256
    [Google Scholar]
  29. Meulenberg R., Pronk J. T., Hazeu W., Bos P., Kuenen J. G. 1992; Oxidation of reduced sulfur compounds by intact cells of Thiobacillus acidophilus. J Bacteriol 150:582–591
    [Google Scholar]
  30. Nagashima K. V. P., Hiraishi A., Shimada K., Matsuura K. 1997a; Horizontal transfer of genes coding for the photo-synthetic reaction centers of purple bacteria. J Mol Evol 45:131–136
    [Google Scholar]
  31. Nagashima K. V. P., Matsuura K., Wakao N., Hiraishi A., Shimada K. 1997b; Nucleotide sequences of genes coding for photosynthetic reaction centers and light-harvesting proteins of Acidiphilium rubrum and related aerobic acidophilic bacteria. Plant Cell Physiol 38:1249–1258
    [Google Scholar]
  32. Norris P. R., Marsh R. M., Lindstrom E. B. 1986; Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnol Appl Biochem 8:318–329
    [Google Scholar]
  33. Pronk J. T., Meulenberg R., Hazeu W., Bos P., Kuenen J. G. 1990; Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75:293–306
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method : a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Shimada K. 1995; Aerobic anoxygenic phototrophs. Anoxygenic Photosynthetic Bacteria105–122 Blankenship R. E., Madigan M. T., Bauer C. E. Dordrecht: Kluwer;
    [Google Scholar]
  37. Sievers M., Ludwig W., Teuber M. 1994; Phylogenetic positioning of Acetobacter Gluconobacter Rhodopila and Acidiphilium species as a branch of acidophilic bacteria in the oc-subclass of Proteobacteria based on 16S ribosomal DNA sequences. Syst Appl Microbiol 17:189–196
    [Google Scholar]
  38. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30:225–220
    [Google Scholar]
  39. Takaichi S. 1993; Usefulness of field desorption mass spec-trometry in determining molecular masses of carotenoids, natural carotenoid derivatives and their chemical derivatives. Org Mass Spectrom 28:785–788
    [Google Scholar]
  40. Takaichi S., Shimada K. 1992; Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213:374–385
    [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. 1991; Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  42. Wakao N., Shiba T., Hiraishi A., Ito M., Sakurai Y. 1993; Distribution of bacteriochlorophyll a species of the genus Acidiphilium. Curr Microbiol 27:277–279
    [Google Scholar]
  43. Wakao N., Nagasawa N., Matsuura T., Matsukura H., Matsumoto T., Hiraishi A., Sakurai Y., Shiota H. 1994; Acidiphilium multivorum sp. nov., an acidophilic chemoorgano-trophic bacterium from pyritic acid mine drainage. J Gen Appl Microbiol 40:143–159
    [Google Scholar]
  44. Wakao N., Yokoi N., Isoyama N. 8 other authors 1996; Discovery of natural photosynthesis using zinc-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1389
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1389
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error