1887

Abstract

Four freshwater Antarctic lakes were examined for the presence of -galactosidase-producing bacteria using mineral medium enrichments and lactose. Enrichments from only one of the lakes produced growth and two strains were isolated that were very similar in phenotype and fatty acid profile, and shared considerable homology in their DNA (DNA–DNA hybridization = 93±7%). The strains were psychrotrophic with theoretical , and of 30–31, –7 ° and 26 °C, respectively. The -galactosidase in cell extracts had an optimal activity at 39 C. The strains were Gram-negative rods, showed gliding motility, contained branched and hydroxy fatty acids, and menaquinone 6 as the major respiratory quinone. The strains did not form microcysts and utilized lactose while using ammonium ions as a source of nitrogen, and a range of other sugars. The G+C content of the DNA was 34 mol%. Phylogenetic analysis of one of the strains, by comparison of 16S rDNA sequences, showed that it was most similar, but not identical to, and ‘[] ’. Both species could be differentiated phenotypically from the Antarctic isolates. DNA–DNA hybridization of the Antarctic isolate with six different members of the 16S rDNA cluster showed no strain with greater than 18% relatedness. The nearest type species to the Antarctic isolate in the phylogenetic analysis was . The name is proposed for the Antarctic strains, and the type strain is ATCC 51468(= ACAM376).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1405
1998-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1405.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1405&mimeType=html&fmt=ahah

References

  1. Athalye M., Goodfellow M., Minnikin D. E. M. 1984; Menaquinone composition of Actinomadura and related taxa. J Gen Microbiol 130:817–823
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148
    [Google Scholar]
  3. Bowman J. P., Austin J. J., Cavanagh J., Sanderson K. 1996; Novel Psychrobacter species from ornithogenic soils. Int J Syst Bacteriol 46:841–848
    [Google Scholar]
  4. Dobson S. J., Colwell R. R., Franzmann P. D., McMeekin T. A. 1993; Direct sequencing of the PCR-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. (ACAM 44T = DSM 5425T), and Flavobacterium salegens sp. nov. (ACAM 48T = DSM 5424T), new species from a hypersaline Antarctic lake. Int J Syst Bacteriol 43:77–83
    [Google Scholar]
  5. Ellis-Evans J. C. 1985; Microbial ecology in Antarctica. Biologist 32:171–176
    [Google Scholar]
  6. Gherna R., Woese C. R. 1993; A partial phylogenetic analysis of the ‘flavobacter-bacteroides’ phylum: basis of taxonomic restructuring. Syst Appl Microbiol 15:513–521
    [Google Scholar]
  7. Gounot A.-M. 1991; Bacterial life at low temperature; physiological aspects and biotechnological implications. A review. J Appl Bacterial 71:386–397
    [Google Scholar]
  8. Gräf W. 1962; Über Wassermyxobakterien. Arch Hyg Bacterial 146:114–125
    [Google Scholar]
  9. Hildebrand D. C. 1971; Pectate and pectin gels for differentiation of Pseudamanas sp. and other bacterial pathogens. Phytopathology 61:1430–1436
    [Google Scholar]
  10. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microhiol 4:184–192
    [Google Scholar]
  11. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The ribosomal database project. Nucleic Acid Res 21: suppl 3021–3023
    [Google Scholar]
  12. Laybourne-Parry J., Marchant H. 1992; The microbial plankton of freshwater lakes in the Vestfold Hills, Antarctica. Polar Biol 12:405–410
    [Google Scholar]
  13. Loveland J., Gutshall K., Kasmir J., Prema P., Brenchley J. E. 1994; Characterization of psychrotrophic microorganisms producing β-galactosidase activities. Appl Environ Microbiol 60:12–18
    [Google Scholar]
  14. McCurdy H. D. Jr 1969; Study on the taxonomy of the Myxobacterales. I. Record of Canadian isolates and survey of methods. Can J Mierohiol 15:1453–1461
    [Google Scholar]
  15. Mahoney R. R. 1985; Modification of lactose and lactose-containing dairy products with β-galactosidase. In Developments in Dairy Chemistry 3 Lactose and Minor Constituents;69–109 Fox P. F. London: Elsevier;
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacterial 39:159–167
    [Google Scholar]
  17. Miller J. H. 1972; Assay of β-galactosidase. In Experiments in Molecular Genetics352–355 Cold Spring Harbor: Cold Springs Harbor Laboratory;
    [Google Scholar]
  18. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. 1988; Cultural and chemical charaterization of CDC Groups EO-2, M-5 and M-6, Moraxella (Moraxella) species, Oligella urethralis, Actinetobacter species, and Psychrobacter immoholis . J Clin Microbiol 26:484–492
    [Google Scholar]
  19. Murray M. G., Thompson W. F. 1980; Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 19:4321–4325
    [Google Scholar]
  20. Ophir T., Gutnick D. L. 1994; A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745
    [Google Scholar]
  21. Ratkowsky D. A., Lowrey R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial growth throughout the entire biokinetic range. J Bacteriol 154:1222–1226
    [Google Scholar]
  22. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria, 2. Baltimore: Williams & Wilkins;
    [Google Scholar]
  23. Skerratt J. H., Nichols P. D., Mancuso C. A., James S. R., Dobson S.J., McMeekin T. A., Burton H. R. 1991; The phospholipid ester-linked fatty acid composition of members of the family Halomonadaceae and genus Elavabacterium: a chemotaxonomic guide. Syst Appl Microbiol 14:8–13
    [Google Scholar]
  24. Smibert R. M., Krieg N. R. 1981; General characterisation. In Manual of Methods for General Bacteriology409–433 Gerhardt P. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Swofford D. L. 1990; paup: Phylogenetic Analysis Using Parsimony, version 3.1. Champaign IL: Illinois Natural History Survey;
    [Google Scholar]
  26. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36
    [Google Scholar]
  27. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B. 1994; New perspectives in the classification of the flavo-bacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov. and Empedobacter nom. rev. Int J Svst Bacteriol 44:827–831
    [Google Scholar]
  28. West P. A., Colwell R. R. 1984; Identification and classification of the Vibrionaceae – an overview. In Vibrios in the Environment285–363 Colwell R. R. New York: Wiley;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1405
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error