1887

Abstract

A novel halophilic fermentative bacterium has been isolated from the black sediment below a gypsum crust and a microbial mat in hypersaline ponds of Mediterranean salterns. Morphologically, physiologically and genetically this organism belongs to the genus . strain SG 3903 (T = type strain) is composed of non-sporulating long flexible rods with peritrichous flagella, able to grow in the salinity range of 5–30% NaCI, with an optimum at 14–15%. The strain grows by fermenting carbohydrates or by using the Stickland reaction with either serine or H as electron donors and glycine-betaine as acceptor, which is reduced to trimethylamine. The two species described so far in the genus are not capable of Stickland reaction with glycine-betaine + serine; however, can use glycine-betaine with H as electron donor. Strain SG 3903 thus represents the first described strain in the genus capable of the Stickland reaction with two amino acids. Although strain SG 3903 showed 67% DNA-DNA relatedness to . , it is physiologically sufficiently different from the two described species to be considered as a new species which has been named sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-103
1999-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-103.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-103&mimeType=html&fmt=ahah

References

  1. Amann R. I., Ludwig W., Schleifer K. H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989 Short Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Bhupathiraju V. K., Oren A., Sharma P. K., Tanner R. S., Woese C. R., Mclnerney M. J. 1994; Haloanaerobium salsugo sp. nov., a moderately halophilic anaerobic bacterium from a subterranean brine. Int J Syst Bacteriol 44:565–572
    [Google Scholar]
  4. Cashion P., Hodler-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  5. Caumette P. 1993; Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49:473–481
    [Google Scholar]
  6. Caumette P., Baulaigue R., Matheron R. 1988; Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean Salinas. Syst Appl Microbiol 10:284–292
    [Google Scholar]
  7. Caumette P., Baulaigue R., Matheron R. 1991a; Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155:170–176
    [Google Scholar]
  8. Caumette P., Cohen Y., Matheron R. 1991b; Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst Appl Microbiol 14:33–38
    [Google Scholar]
  9. Caumette P., Matheron R., Raymond N., Relexans J.-C. 1994; Microbial mats in the hypersaline ponds of Mediterranean Salterns (Salin-de-Giraud, France). FEMS Microbiol Ecol 13:273–286
    [Google Scholar]
  10. Caumette P., Imhoff J. F., Suling J., Matheron R. 1997; Chromatium glycolicum sp. nov., a moderately halophilic purple sulfur bacterium that uses glycolate as substrate. Arch Microbiol 167:11–18
    [Google Scholar]
  11. Cayol J.-L., Ollivier B., Patel B. K. C., Ageron E., Grimont P. A. D., Prensier G., Garcia J.-L. 1995; Haloanaerobium lacusroseus sp. nov., an extremely halophilic fermentative bacterium from the sediments of a hypersaline lake. Int J Syst Bacteriol 45:790–797
    [Google Scholar]
  12. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  13. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  14. Fendrich C., Hippe H., Gottschalk G. 1990; Clostridium halophilum sp. nov. and C. litorale sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction. Arch Microbiol 154:127–132
    [Google Scholar]
  15. Galinski E. A., Trüper H. G. 1994; Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108
    [Google Scholar]
  16. Glazer A. N., Cohen-Bazire G., Stanier R. Y. 1971; Characterization of phycoerythrin from a Cryptomonas species. Arch Microbiol 80:1–8
    [Google Scholar]
  17. Heijthuijsen J. H. F. G., Hansen T. A. 1989; Betaine fermentation and oxidation by marine Desulfuromonas strain. Appl Environ Microbiol 55:965–969
    [Google Scholar]
  18. Hippe H., Caspari D., Fiebig K., Gottschalk G. 1979; Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri . Proc Nati Acad SciUSA 75:494–498
    [Google Scholar]
  19. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  20. Imhoff J. F., Süling J. 1996; The phylogenetic relationship among Ectothiorhodospiraceae : a re-evaluation of their tax-onomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113
    [Google Scholar]
  21. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD Syst 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  22. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  23. Liaw H. J., Mah R. A. 1992; Isolation and characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from a solar saltern. Appl Environ Microbiol 58:260–266
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  25. Möller B., Oßmer R., Howard B. H., Gottschalk G., Hippe H. 1984; Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides sp. nov. and Sporomusa ovata sp. nov. Arch Microbiol 139:388–396
    [Google Scholar]
  26. Moller B., Hippe H., Gottschalk G. 1986; Degradation of various amine compounds by mesophilic clostridia. Arch Microbiol 145:85–90
    [Google Scholar]
  27. Naumann E., Hippe H., Gottschalk G. 1983; Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and l-alanine by Clostridium sporogenes-Methanosarcina barkeri coculture. Appl Environ Microbiol 45:474–483
    [Google Scholar]
  28. Ollivier B., Caumette P., Garcia J.-L, Mah R. A. 1994; Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38
    [Google Scholar]
  29. Oren A. 1990; The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol EcollX187–192
    [Google Scholar]
  30. Oren A. 1992; The genera Haloanaerobium, Halobacteroides, and Sporohalobacter. The Prokaryotes, 2nd. 21893–1900 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  31. Overmann J., Fischer U., Pfennig N. 1992; A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157:329–335
    [Google Scholar]
  32. Patel B. K. C., Andrews K. T., Ollivier B., Mah R. A., Garcia J.-L. 1995; Re-evaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA gene. FEMS Microbiol Lett 134:115–119
    [Google Scholar]
  33. Pfennig N., Trüper H. G. 1981; Isolation of members of the families Chromatiaceae and Chlorobiaceae. In The Prokaryotes 1279–289 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin & Heidelberg: Springer;
    [Google Scholar]
  34. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306
    [Google Scholar]
  35. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes 1926–940 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin & Heidelberg: Springer;
    [Google Scholar]
  36. Postgate J. R. 1984 The Sulphate-reducing Bacteria Cambridge : Cambridge University Press;
    [Google Scholar]
  37. Rainey F. A., Zhilina T. N., Bulygina E. S., Stackebrandt E., Tourova T. P., Zavarzin G. A. 1995; The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements of the genus and species level. Anaerobe 1:185–199
    [Google Scholar]
  38. Ravot G., Magot M., Ollivier B., Patel B. K. G., Ageron E., Grimont P. A. D., Thomas P., Garcia J.-L. 1997; Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol Lett 147:81–88
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Simankova M. V., Chernych N. A., Osipov G. A., Zavarzin G. A. 1993; Halocella cellulolytica gen. nov., sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst Appl Microbiol 16:385–389
    [Google Scholar]
  41. Tsai C.-R., Garcia J.-L., Patel B. K. C., Cayol J.-L., Baresi L., Mah R. A. 1995; Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah. Int J Syst Bacteriol 45:301–307
    [Google Scholar]
  42. Vargas C, Fernandez-Castillo R., Canovas D., Ventosa A., Nieto J. J. 1995; Isolation of cryptic plasmids from moderately halophilic eubacteria of the genus Halomonas. Characterization of a small plasmid from H. elongata and its use for shuttle vector construction. Mol Gen Genet 246:411–418
    [Google Scholar]
  43. Winker S., Woese C. R. 1991; A definition of the domains Archea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165
    [Google Scholar]
  44. Yancey P. H., Clark M. E., Hand S. C., , Bowlus R. D., Somero G. N. 1982; Living with water stress: evolution of osmolyte systems. Science 217:1214–1222
    [Google Scholar]
  45. Zhilina T. N., Zavarzin G. A. 1990; Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol Rev 87:315–322
    [Google Scholar]
  46. Zhilina T. N., Kevbrin V. V., Lysenko A. M., Zavarzin G. A. 1991a; Isolation of saccharolytic anaerobes from a halophilic cyanobacterial mat. Microbiology (English translation of Mikrobiologiya) 60:101–107
    [Google Scholar]
  47. Zhilina T. N., Miroshnikova L. V., Osipov G. A., Zavarzin G. A. 1991b; Halobacteroides lacunaris sp. nov., new saccharolytic, anaerobic, extremely halophilic organism from the lagoon-like hypersaline Lake Chokrak. Microbiology (English translation of Mikrobiologiya) 60:495–503
    [Google Scholar]
  48. Zhilina T. N., Zavarzin G. A., Bulygina E. S., Kevbrin V. V., Osipov G. A., Chumakov K. M. 1992; Ecology, physiology and taxonomy studies on a new taxon of Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov. Syst Appl Microbiol 15:275–284
    [Google Scholar]
  49. Zhilina T. N., Zavarzin G. A., Detkova E. N., Rainey F. A. 1996; Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales. Curr Microbiol 32:320–326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-103
Loading
/content/journal/ijsem/10.1099/00207713-49-1-103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error