1887

Abstract

Strain 130Z was isolated from the bovine rumen. It is a facultatively anaerobic, pleomorphic, Gram-negative rod. It exhibits a ‘Morse code’ form of morphology, which is characteristic of the genus . Strain 130Z is a capnophilic, osmotolerant succinogen that utilizes a broad range of sugars. It accumulates high concentrations of succinic acid (> 70gl). Strain 130Z is positive for catalase, oxidase, alkaline phosphatase and β-galactosidase, but does not produce indole or urease. Acid but no gas is produced from -glucose and -fructose. 16S rRNA sequence analysis places strain 130Z within the family ; the most closely related members of the family have 16S rRNA similarities of 95.5% or less with strain 130Z. Strain 130Zwas compared with and the related Bisgaard Taxa 6 and 10. Based upon morphological and biochemical properties, strain 130Z is most similar to members of the genus within the family . It is proposed that strain 130Z be classified as a new species, . The type strain of sp. nov. is ATCC 55618.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-207
1999-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-207.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-207&mimeType=html&fmt=ahah

References

  1. Bisgaard M., Mutters R., Mannheim W. 1983; Characterization of some previously unreported taxa isolated from guineapigs (Cavia porcellus) and provisionally classed with the ‘HPA-group’. INSERM 114:227–244
    [Google Scholar]
  2. Bisgaard M., Phillips J. E., Mannheim W. 1986; Characterization and identification of bovine and ovine Pasteurellaceae isolated from the oral cavity and rumen of apparently normal cattle and sheep. Acta Pathol Microbiol Immunol Scand Sect B Microbiol 94:9–17
    [Google Scholar]
  3. Boot R., Bisgaard M. 1994; Reclassification of 30 Pasteurellaceae strains isolated from rodents. Lab Anim 29:314–319
    [Google Scholar]
  4. Dewhirst F. E., Paster B. J., Olsen I., Fraser G. J. 1993; Phylogeny of the Pasteurellaceae as determined by comparison of 16S ribosomal ribonucleic acid sequences. Zentbl Bakteriol 279:35–44
    [Google Scholar]
  5. Foster G., Ross H. M., Malnick H., Willems A., Garcia P. 1996; Actinobacillus delphinicola sp. nov., a new member of the family Pasteur ellaceae Pohl (1979) 1981 isolated from sea mammals. Int J Syst Bacteriol 46:648–652
    [Google Scholar]
  6. Guerrant G. O., Lambert M. A., Moss C. W. 1982; Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography. J Clin Microbiol 16:355–360
    [Google Scholar]
  7. Guettler M. V., Jain M. K., Soni B. K. 1996a Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US Patent 5 504004
    [Google Scholar]
  8. Guettler M. V., Jain M. K., Rumler D. 1996b Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining the variants. US Patent 5573931
    [Google Scholar]
  9. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual, 4th. Blacksburg: VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  10. Hollander R., Hess-Reihse A., Mannheim W. 1981; Respiratory quinones in Haemophilus, Pasteurella and Actinobacillus: pattern, function, and taxonomic evaluation. In Haemophilus, Pasteurella and Actinobacillus92–93 Kilian M., Frederiksen W., Biberstein E. L. London: Academic Press;
    [Google Scholar]
  11. Jantzen E., Berdal B. P., Omland T. 1981; Cellular and fatty acid taxonomy of Haemophilus, Pasteurella, and Actinobacillus . In Haemophilus, Pasteurella and Actinobacillus197–203 Kilian M., Frederiksen W., Biberstein E. L. London: Academic Press;
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kilian M., Biberstein E. L. 1984; Genus II Haemophilus . In Bergey’s Manual of Systematic Bacteriology 1561–562 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  14. Kirkham C., Biberstein E. L., & LeFebvre R. B. 1989; Evidence of host-specific subgroups among ‘Histophilus ovis’ isolates. Int J Syst Bacteriol 39:236–239
    [Google Scholar]
  15. Kusukawa N., Uemori T., Asada K., Kato I. 1990; Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction. Biotechniques 9:66–72
    [Google Scholar]
  16. MacFaddin J. F. 1980 Biochemical Tests for Identification of Medical Bacteria, 2nd. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Macy J. M., Snellen J. E., Hungate R. E. 1972; Use of syringe methods for anaerobiosis. J Clin Nutr 25:1318–1323
    [Google Scholar]
  18. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111
    [Google Scholar]
  19. Mannheim W. 1984; Family III Pasteur ellaceae Pohl 1981a, 382. In Bergey’s Manual of Systematic Bacteriology 1550–552 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  20. Mendes E. N., Queiroz D. M. M., Dewhirst F. E., Paster B. J., Moura S. B., Fox J. G. 1996; Helicobacter trogontum sp. nov., isolated from the rat intestine. Int J Syst Bacteriol 46:916–921
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  22. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987
    [Google Scholar]
  23. Osawa R., Rainey F., Fujisawa T., Lang E., Busse H. J., Walsh T. P., Stackebrandt E. 1995; Lonepinella koalarum gen. nov., a new tannin-protein complex degrading bacterium. Syst Appl Microbiol 18:368–373
    [Google Scholar]
  24. Paster B. J., Dewhirst F. E. 1988; Phylogeny of campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int J Syst Bacteriol 38:56–62
    [Google Scholar]
  25. Phillips J. E. 1961; The commensal role of Actinobacillus lignieresii . J Path Bacteriol 82:205–208
    [Google Scholar]
  26. Phillips J. E. 1984; Genus III Actinobacillus Brumpt 1910, 849AL . In Bergey’s Manual of Systematic Bacteriology 1570–575 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  27. Phillips J. E. 1992; The genus Actinobacillus . In The Prokaryotes, a Handbook on the Biology of Bacteria: Eco-physiology, Isolation, Identification, Applications, 2. IV:3342–3351 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Samitz E. M., Biberstein E. L. 1991; Actinobacillus suis-like organisms and evidence of hemolytic strains of Actinobacillus lignieresii in horses. Am J Vet Res 52:1245–1251
    [Google Scholar]
  30. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. Newark, DE: MIDI
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  32. Stephens L. R., Humphrey J. D., Little P. B., Barnum D. A. 1983; Morphological, biochemical, antigenic, and cyto-chemical relationships among Haemophilus somnus, Haemo-philus agni, Haemophilus haemoglobinophilus, Histophilus ovis, and Actinobacillus seminis . J Clin Microbiol 17:728–737
    [Google Scholar]
  33. Stewart C. S., Bryant M. P. 1988; The rumen bacteria. In The Rumen Microbiol Ecosystem21–75 Hobson P. N. London: Elsevier;
    [Google Scholar]
  34. Studier J., Keppler K. 1988; A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol 5:729–731
    [Google Scholar]
  35. Van der Werf M. J., Guettler M. V., Jain M. K., Zeikus J. G. 1997; Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z . Arch Microbiol 167:332–342
    [Google Scholar]
  36. Ward A. C. S., Jaworski M. D., Eddow J. M., Corbeil L. B. 1995; A comparative study of bovine and ovine Haemophilus somnus isolates. Can J Vet Res 59:173–178
    [Google Scholar]
  37. Yokoyama M. T., Johnson K. A. 1988; Microbiology of the rumen and intestine. In The Ruminant Animal: Digestive Physiology and Nutrition125–144 Church D. C. NJ; Prentice Hall:
    [Google Scholar]
  38. Zeikus J. G., Ben-Bassat A., Hegge P. W. 1980; Microbiology of methanogenesis in thermal volcanic environments. J Bacteriol 143:432–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-207
Loading
/content/journal/ijsem/10.1099/00207713-49-1-207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error