1887

Abstract

A secondary intracellular symbiotic bacterium was isolated from the haemolymph of the tsetse fly and cultured in cell line C6/36. Pure-culture isolation of this bacterium was achieved through the use of solid-phase culture under a microaerobic atmosphere. After isolation of strain M1, a range of tests was performed to determine the phenotypic properties of this bacterium. Considering the results of these tests, along with the phylogenetic position of this micro-organism, it is proposed that this intracellular symbiont from should be classified in a new genus gen. nov., as gen. nov., sp. nov. Strain M1is the type strain for this new species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-267
1999-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-267.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-267&mimeType=html&fmt=ahah

References

  1. Aksoy S. 1995; Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associ-ated, primary endosymbionts of tsetse flies. Int J Syst Bacteriol 45:848–851
    [Google Scholar]
  2. Aksoy S., Pourhosseini A., Chow A. 1995; Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to Enterobacteriaceae. Insect Mol Biol 4:15–22
    [Google Scholar]
  3. Aksoy S., Chen X., Hypsa V. 1997; Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera: Glossinidae). Insect Mol Biol 6:183–190
    [Google Scholar]
  4. Aldhous P. 1993; Bacteria may provide access to the tsetse fly. Science 261:548
    [Google Scholar]
  5. Baker J. E. 1991; Properties of glycosidases from the maize weevil, Sitophilus zeamais. Insect Biochem 21:615–621
    [Google Scholar]
  6. Beard C. B., O’Neill S. L., Tesh R. B., Richards F. F., Aksoy S. 1993a; Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today 9:179–183
    [Google Scholar]
  7. Beard C. B., O’Neill S. L., Mason P., Mandelco L., Woese C. R., Tesh R. B., Richards F. F., Aksoy S. 1993b; Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Mol Biol 1:123–131
    [Google Scholar]
  8. Bolton F. J., Coates D., Hutchinson D. N. 1984; The ability of Campylobacter media supplements to neutralize photochemic-ally induced toxicity and hydrogen peroxide. J Appl Bacteriol 56:151–7
    [Google Scholar]
  9. Buchner P. 1965 Endosymbiosis of Animals with Plant Microorganisms New York: Interscience;
    [Google Scholar]
  10. Campbell B. C., Bragg T. S., Turner C. E. 1992; Phylogeny of symbiotic bacteria of four weevil species (Coleoptera : Curculio-nidae) based on analysis of 16S ribosomal DNA. Insect Biochem Mol Biol 22:415–421
    [Google Scholar]
  11. Chen D. Q., Purcell A. H. 1997; Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol 34:220–225
    [Google Scholar]
  12. Clark A., Baumann L., Munson M. A., Baumann P., Campbell B. C., Duffus J. E., Osborne L. S., Moran N. A. 1992; The eubacterial endosymbionts of whiteflies (Homoptera : Aleyro-doidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr Microbiol 25:119–123
    [Google Scholar]
  13. Costa H. S., Westcot D. M., Ullman D. E., Roseli R., Brown J. K., Johnson M. W. 1995; Morphological variation in Bemisia endosymbionts. Protoplasma 189:194–202
    [Google Scholar]
  14. Cowan S. T. 1974 Manual for the Identification of Medical Bacteria, 2. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  15. Dale C. 1997 The secondary (S-) endosymbionts of Glossinia spp PhD thesis. University of Liverpool; UK:
    [Google Scholar]
  16. Davidson E. W., Segura B. J., Steele T., Hendrix D. L. 1994; Microorganisms influence the composition of honeydew produced by the silverleaf whitefly, Bemisia argenti/olili. J Insect Physiol 40:1069–1076
    [Google Scholar]
  17. Douglas A. E. 1989; Mycetocyte symbiosis in insects. Biol Rev 64:409–34
    [Google Scholar]
  18. Douglas A. E. 1997; Parallels and contrasts between symbiotic bacteria and bacterial-derived organelles: evidence from Buchnera, the bacterial symbiont of aphids. FEMS Microbiol Ecol 24:1–9
    [Google Scholar]
  19. Gimenez D. 1964; Staining Rickettsiae in yolk-sac cultures. Stain Techn 39:135–140
    [Google Scholar]
  20. Hill P. D. S., Campbell J. A. 1973; The production of symbiont-free Glossina morsitans and an associated loss of female fertility. Trans R Soc Trop Med Hyg 67:727–728
    [Google Scholar]
  21. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994 Ber gey’s Manual of Determinative Bacteriology, 9. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Huebner E., Davey K. G. 1974; Bacteroids in the ovaries of a tsetse fly. Nature 249:260–261
    [Google Scholar]
  23. Hypsa V., Aksoy S. 1997; Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug Cimex lectularius (Heteroptera : Cimicidae). Insect Mol Biol 6:301–304
    [Google Scholar]
  24. Hypsa V., Dale C. 1997; In vitro culture and phylogenetic analysis of Candidatus Arsenophonus triatominarum an in-tracellular bacterium from the triatomine bug Triatoma in-festans. Int J Syst Bacteriol 47:1140–1144
    [Google Scholar]
  25. Igarashi A. 1978; Isolation of Singh’s Aedes albopictus cell clone sensitive to dengue and chikungunya viruses. J Gen Virol 40:531
    [Google Scholar]
  26. Krieg N. R., Hoffman P. S. 1986; Microaerophily and oxygen toxicity. Annu Rev Microbiol 40:107–130
    [Google Scholar]
  27. Lehane M. J., Allingham P. G., Weglicki P. 1996; Composition of the peritrophic matrix of the tsetse fly, Glossina morsitans morsitans. Cell Tissue Res 283:375–384
    [Google Scholar]
  28. Maudlin I., Ellis D. S. 1985; Association between intracellular rickettsial-like infections of midgut cells and susceptibility to trypanosome infection in Glossina spp. Z Parasitenkd 71:683–687
    [Google Scholar]
  29. Miller W. B., Peralta E., Ellis D. R., Perkins H. H. 1994; Stickiness potential of individual insect honeydew carbohydrates on cotton lint. Textile Res 64:344–350
    [Google Scholar]
  30. Moat A. G., Foster J. W. 1988 Microbial Physiology New York: Wiley;
    [Google Scholar]
  31. Munson M. A., Baumann P., Kinsey M. B. 1991; Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Bacteriol 41:566–568
    [Google Scholar]
  32. Nogge G. 1976; Sterility in tsetse flies caused by loss of symbionts. Experientia 32:995
    [Google Scholar]
  33. Nogge G. 1978; Aposymbiotic tsetse flies, Glossina morsitans morsitans, obtained by feeding on rabbits immunised specifically with symbionts. J Insect Physiol 24:299–304
    [Google Scholar]
  34. Nogge G. 1981; Significance of symbionts for the maintenance of an optimal nutritional state of successful reproduction in hematophagous arthropods. Parasitology 82:101–104
    [Google Scholar]
  35. O’Neill S. L., Giordano R., Colbert A. M. E., Karr L., Robertson H. M. 1992; 16S rRNA phylogenetic analysis of bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702
    [Google Scholar]
  36. O’Neill S. L., Gooding R. H., Aksoy S. 1993; Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med Vet Entomol 7:377–383
    [Google Scholar]
  37. O’Neill S. L., Pettigrew M. M., Sinkins S. P., Braig H. R., Andreadis T. G., Tesh R. B. 1997; In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol Biol 6:33–39
    [Google Scholar]
  38. Pinnock D. E., Hess R. T. 1974; The occurrence of intracellular rickettsia-like organisms in the tsetse flies, Glossina morsitans, G.fuscipes, G. brevipalpis and G. pallidipes. Acta Trop 31:70–79
    [Google Scholar]
  39. Southwood T. R. E., Khalaf S., Sinden R. E. 1975; The microorganisms of tsetse flies. Acta Trop 32:259–266
    [Google Scholar]
  40. Unterman B. M., Baumann P., McLean D. L. 1989; Pea aphid symbiont relationships established by analysis of 16S rRNAs. J Bacteriol 171:2970–2974
    [Google Scholar]
  41. Welburn SC., Maudlin I. 1991; Rickettsia-like organisms, puparial temperature and susceptibility to trypanosome infection in Glossina morsitans. Parasitology 102:201–206
    [Google Scholar]
  42. Welburn S. C., Maudlin I., Ellis D. S. 1987; In vitro cultivation of rickettsia-like organisms from Glossina spp. Ann Trop Med Parasitol 81:331–335
    [Google Scholar]
  43. Welburn S. C., Arnold K., Maudlin I., Gooday G. W. 1993; Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies. Parasitology 107:141–145
    [Google Scholar]
  44. Wigglesworth V. B. 1972 The Principles of Insect Physiology, 7. London: Chapman & Hall;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-267
Loading
/content/journal/ijsem/10.1099/00207713-49-1-267
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error