1887

Abstract

Fifty-five Chinese isolates from nodules of were characterized and compared with the type strains of the species and genera of bacteria which form nitrogen-fixing symbioses with leguminous host plants. A polyphasic approach, which included RFLP of PCR-amplified 16S rRNA genes, multilocus enzyme electrophoresis (MLEE), DNA-DNA hybridization, 16S rRNA gene sequencing, electrophoretic plasmid profiles, cross-nodulation and a phenotypic study, was used in the comparative analysis. The isolates originated from several different sites in China and they varied in their phenotypic and genetic characteristics. The majority of the isolates had moderate to slow growth rates, produced acid on YMA and harboured a 930 kb symbiotic plasmid (pSym). Five different RFLP patterns were identified among the 16S rRNA genes of all the isolates. Isolates grouped by PCR-RFLP of the 16S rRNA genes were also separated into groups by variation in MLEE profiles and by DNA-DNA hybridization. A representative isolate from each of these DNA homology groups had a separate position in a phylogenetic tree as determined from sequencing analysis of the 16S rRNA genes. A new species, , is proposed for the majority of the isolates, which belonged to a moderately slow- to slow-growing, acid-producing group based upon their distinct phylogenetic position, their unique electrophoretic type, their low DNA homology with reference strains representing the species within the genus and their distinct phenotypic features. Strain ACCC 19665 was chosen as the type strain for sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-51
1999-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-51.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-51&mimeType=html&fmt=ahah

References

  1. Allen O. N., Allen E. K. 1981; The Leguminosae: a Source Book of Characteristics. Uses, and Nodulation Madison, WI: University of Wisconsin Press;
    [Google Scholar]
  2. Amarger N., Marcherei V., Laguerre G. 1997; Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov. from Phaseolus vulgaris nodules. Int J Syst Bacteriol 40:996–1006
    [Google Scholar]
  3. van Berkum P. 1990; Evidence for a third uptake hydrogenase phenotype among the soybean bradyrhizobia. Appl Environ Microbiol 56:3835–3841
    [Google Scholar]
  4. van Berkum P., Beyene D., Eardly B. D. 1996; Phylogenetic relationships among Rhizobium species nodulating the common bean Phaseolus vulgaris L.). Int J Syst Bacteriol 46:240–244
    [Google Scholar]
  5. van Berkum P., Beyene D., Bao G., Campbell T. A., Eardly B. D. 1998a; Rhizobium mongolense sp. nov., is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22
    [Google Scholar]
  6. van Berkum P., Ruihua F., Campbell T. A., Eardly B. D. 1998b; Some issues of relevance in the taxonomy of rhizobia. In Highlights on Nitrogen Fixation Research Martínez E., Hernández G. New York: Plenum (in press);
    [Google Scholar]
  7. Brown A. H. D., Feldman M. W., Nevo E. 1980; Multilocus structure of natural populations of Hordeum spontaneum . Genetics 96:523–536
    [Google Scholar]
  8. Caballero-Mellado J., Martínez-Romero E. 1994; Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus . Appl Environ Microbiol 60:1532–1537
    [Google Scholar]
  9. Chen W. X., Wang E. T., Wang S. Y., Li Y. B., Chen X. Q., Li Y. 1995; Characterization of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159
    [Google Scholar]
  10. Chen W. X., Yan G. H., Li J. L 1988; Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–398
    [Google Scholar]
  11. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  12. Cilia V., Lafay B., Christen R. 1996; Sequence heterogeneities among 16S ribosomal RNA sequences and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13:451–461
    [Google Scholar]
  13. De Ley J. 1970; Re-examination of the association between melting point, buoyant density, and chemical base composition of DNA. J Bacteriol 101:738–754
    [Google Scholar]
  14. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata . Int J Syst Bacteriol 38:89–98
    [Google Scholar]
  15. Eardly B. D., Wang F. S., Whittam T. S., Selander R. K. 1995; Species limits in Rhizobium populations that nodulate the common bean Phaseolus vulgaris . Appl Environ Microbiol 58:1809–1815
    [Google Scholar]
  16. Eckhardt T. 1978; A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588
    [Google Scholar]
  17. Geniaux E., Flores M., Palacios R., Martínez E. 1995; Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. Int J Syst Bacteriol 45:392–394
    [Google Scholar]
  18. Graham P. H., Sadowsky M. J., Keyser H. H. & 8 other authors 1991; Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587
    [Google Scholar]
  19. Hynes M. F., McGregor N. F. 1990; Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum . Mol Microbiol 4:567–574
    [Google Scholar]
  20. Jarvis B. D. W., van Berkum P., Chen W. X., Nour S. M., Fernandes M. P., Cleyet-Marel J. C., Gillis M. 1997; Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to a new genus: Mesorhizobium. Int J Syst Bacteriol 47:895–898
    [Google Scholar]
  21. Jordan D. C. 1984; Family III. Rhizobiaceae . In Bergey’s Manual of Systematic Bacteriology 1234–242 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism21–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  23. Konoshima T., Terada H., Kokumai M., Kozuka M., Tokuda H., Estes J. R., Li L., Wang H. K., Lee K. H. 1993; Studies on inhibitors of skin tumour promotion. XII. Rotenoids from Amorpha fruticosa . J Nat Prod (Lloydia) 56:843–848
    [Google Scholar]
  24. Kumar S., Tamura K., Nei M. 1993; mega: Molecular Evolutionary Genetics Analysis, version 1.01. The Pennsylvania State University; University Park, PA 16802, USA:
    [Google Scholar]
  25. Ladha J. K., So R. B. 1994; Numerical taxonomy of photo-synthetic rhizobia nodulating Aeschynomene species. Int J Syst Bacteriol 44:62–73
    [Google Scholar]
  26. Laguerre G., Allard M., Revoy F., Amarger N. 1994; Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 61:56–63
    [Google Scholar]
  27. de Lajudie P., Willems A., Pot B. 7 other authors 1994; Polyphasic taxonomy of rhizobia : emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733
    [Google Scholar]
  28. de Lajudie P., Willems A., Nick G. & 9 other authors 1998; Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382
    [Google Scholar]
  29. Leonard L. T. 1943; A simple assembly for use in the testing for cultures of rhizobia. J. Bacteriol 45:523–527
    [Google Scholar]
  30. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The ribosomal database project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  31. Martínez E., Palacios R., Sánchez F. 1987; Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834
    [Google Scholar]
  32. Martínez E., Romero D., Palacios R. 1990; The Rhizobium genome. Crit Rev Plant Sci 9:59–93
    [Google Scholar]
  33. Martínez-Romero E., Caballero-Mellado J. 1996; Rhizobium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci 15:113–140
    [Google Scholar]
  34. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426
    [Google Scholar]
  35. Maynard Smith J., Smith N. H., O’Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Acad SciUSA 90:4384–4388
    [Google Scholar]
  36. Mitscher L. A., Park Y. H., Al-Shamma A., Hudson P. B., Haas T. 1981; Amorfrutin A and B, bibenzyl antimicrobial agents from Amorpha fruticosa . Phytochemistry 20:781–785
    [Google Scholar]
  37. Morett E., Moreno S., Espiri G. 1988; Transcription analysis of the three nifH genes of Rhizobium phaseoli with gene fusion. Mol Gen Genet 213:499–504
    [Google Scholar]
  38. Navarro R. B., Vargas A. A. T., Schroder E. C., van Berkum P. 1993; Uptake hydrogenase (Hup) in common bean Phaseolus vulgaris symbioses. Appl Environ Microbiol 60:4162–4165
    [Google Scholar]
  39. Nei M., Li W. H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad SciUSA 76:5269–5273
    [Google Scholar]
  40. Noel K. D., Sánchez F., Fernandez F., Leemans J., Cevallos A. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158:148–155
    [Google Scholar]
  41. Oyaizu H., Matsumoto S., Minamisawa K., Gamou T. 1993; Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J Gen Appl Microbiol 39:339–354
    [Google Scholar]
  42. Pérez-Ramirez N. O., Rogel-Hernández M. A., Wang E. T., Martínez-Romero E. 1998; Seeds of Phaseolus vulgaris bean carry Rhizobium etli . FEMS Microbiol Ecol 26:289–296
    [Google Scholar]
  43. Piñero D., Martínez E., Selander R. K. 1988; Genetic diversity and relationships among isolates from Rhizobium leguminosarum biovar phaseoli . Appl Environ Microbiol 54:2825–2832
    [Google Scholar]
  44. Rhoads D. D., Roufa D. J. 1989; Seqaid II (tm) version 3.5. Molecular Genetics Laboratory Kansas State University; KS, USA:
    [Google Scholar]
  45. Romero D., Brom S., Martínez-Salazar J., de Lourdes Girard M., Palacios R., Davila G. 1991; Amplification and deletion of a nod-nif region in the symbiotic plasmid of Rhizobium phaseoli . J Bacteriol 173:2435–2441
    [Google Scholar]
  46. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  47. Segovia L., Young J. P. W., Martínez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377
    [Google Scholar]
  48. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  49. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy San Francisco: Freeman;
    [Google Scholar]
  50. Souza V., Nguyen T. T., Hudson R. R., Piñero D., Lenski R. E. 1992; Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex?. Proc Natl Acad SciUSA 89:8389–8393
    [Google Scholar]
  51. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  52. Sullivan J. T., Patrick H. N., Lowther W. L., Barry Scott D., Ronson C. W. 1995; Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad SciUSA 92:8985–8989
    [Google Scholar]
  53. Sullivan J. T., Eardly B. D., van Berkum P., Ronson C. W. 1996; Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus . Appl Environ Microbiol 62:2818–2825
    [Google Scholar]
  54. Tan Z. Y., Xu X. D., Wang E. T., Gao J. L., Martínez-Romero E., Chen W. X. 1997; Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879
    [Google Scholar]
  55. Vincent J. M. 1970 A Manual for the Practical Study of Rootnodule Bacteria IBP handbook 15 Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  56. Wang Y., Zhang Z., Ramanan N. 1997; The actinomycete Thermobispora bispora contains two distinct types of transcrip-tionally active 16S rRNA genes. J Bacteriol 179:3270–3276
    [Google Scholar]
  57. Wang E. T., van Berkum P., Beyene D., Sui X. H., Dorado O., Chen W. X., Martínez-Romero E. 1998; Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae . Int J Syst Bacteriol 48:687–699
    [Google Scholar]
  58. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  59. Willems A., Collins D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequence. Int J Syst Bacteriol 43:305–313
    [Google Scholar]
  60. Xu Y., Murooka Y. 1995; A large plasmid isolated from Rhizobium huakuii bv Renge that includes genes for both nodulation of Astragalus sinicus cv. Japan and nitrogen-fixation. J Ferment Bioeng 80:276–279
    [Google Scholar]
  61. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120
    [Google Scholar]
  62. Yelton M. M., Yang S. S., Edie S.A., Lim S.T. 1983; Characterization of an effective salt-tolerant, fast-growing strain of Rhizobium japonicum . J Gen Microbiol 129:1537–1547
    [Google Scholar]
  63. Young J. P. W. 1985; Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown in the same site. J Gen Microbiol 131:2389–2408
    [Google Scholar]
  64. Young J. P. W., Haukka K. E. 1996; Diversity and phylogeney of rhizobia. New Phytol 133:87–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-51
Loading
/content/journal/ijsem/10.1099/00207713-49-1-51
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error