1887

Abstract

Two new members of the genus were isolated from an intertidal mud flat sample with thiosulfate as the electron donor and CO as carbon source. On the basis of differences in genotypic and phenotypic characteristics, it is proposed that strain JB-A1 (= DSM 12350) and strain JB-A2 (= DSM 12351) are members of two new species, and , respectively. The cells were Gram-negative vibrios or slightly bent rods. Strain JB-A1 was highly motile, whereas strain JB-A2 showed a much lower degree of motility combined with a strong tendency to form aggregates. Both organisms were obligately autotrophic and strictly aerobic. Nitrate was not used as electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate, sulfur and sulfide. Neither isolate was able to grow heterotrophically. For strain JB-A1, growth was observed between pH values of 4·0 and 7·5 with an optimum at pH 6·0, whereas for strain JB-A2, growth was observed between pH 4·2 and 8·5 with an optimum at pH 6·5. The temperature limits for growth were between 3·5 and 42 °C and 3·5 and 39 °C, respectively. The optimum growth temperature for strain JB-A1 was between 29 and 33·5 °C, whereas strain JB-A2 showed optimal growth between 32 and 35 °C. The mean maximum growth rate on thiosulfate was 0·35 h for strain JB-AT and 0·45 h for strain JB-A2.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-385
1999-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-385.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-385&mimeType=html&fmt=ahah

References

  1. Beudeker R. F., Cannon G. C., Kuenen J. G., Shively J. M. 1980; Relations between D-ribulose-1,5-biphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  3. Brinkhoff T., Muyzer G. 1997; Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63:3789–3796
    [Google Scholar]
  4. Canfield D. E., Thamdrup B. 1996; Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol Ecol 19:95–103
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  7. Drobner E., Huber H., Stetter K. O. 1990; Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol 56:2922–2923
    [Google Scholar]
  8. Eberhard C., Wirsen C. O., Jannasch H. W. 1995; Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents. Geomicrobiol J 13:145–164
    [Google Scholar]
  9. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  11. Jahnke K.-D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2000 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  12. Jannasch H. W., Wirsen C. O., Nelson D. C., Robertson L. A. 1985; Thiomicrospira crunogena sp. nov., a colorless sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35:422–424
    [Google Scholar]
  13. Javor B. J., Wilmot D. B., Vetter R. D. 1990; pH-dependent metabolism of thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospira crunogena . Arch Microbiol 154:231–238
    [Google Scholar]
  14. Jørgensen B. B. 1977; The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22:814–832
    [Google Scholar]
  15. Kelly D. P., Chambers L. A., & Trudinger P. A. 1969; Cyanolysis spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–901
    [Google Scholar]
  16. Kuenen J. G., Robertson L. A. 1989; Genus Thiomicrospira. Kuenen and Veldkamp 1972, 253AL . Bergey’s Manual of Systematic Bacteriology, 3:1858–1861 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Kuenen J. G., Veldkamp H. 1972; Thiomicrospira pelophila, gen. n., sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie Leeuwenhoek 38:241–256
    [Google Scholar]
  18. Kuenen J. G., Veldkamp H. 1973; Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus . Arch Microbiol 94:173–190
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  20. Muyzer G., Teske A., Wirsen C. O., Jannasch H. W. 1995; Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172
    [Google Scholar]
  21. Nelson D. C., Jannasch H. W. 1983; Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269
    [Google Scholar]
  22. Rethmeier J., Rabenstein A., Langer M., Fischer U. 1997; Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. J Chromatogr A 760:295–302
    [Google Scholar]
  23. Ruby E. G., Jannasch H. W. 1982; Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165
    [Google Scholar]
  24. Ruby E. G., Wirsen C. O., Jannasch H. W. 1981; Chemolithoautotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42:317–342
    [Google Scholar]
  25. Schüring J., Kölling M., Schulz H. D. 1997; The potential formation of acid mine drainage in pyrite-bearing hard-coal tailings under water-saturated conditions : an experimental approach. Environ Geol 31:59–65
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  27. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  28. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccaravorum from various sources. Syst Appl Microbiol 13:128–130
    [Google Scholar]
  29. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202
    [Google Scholar]
  30. Tuttle J. H., Jannasch H. W. 1977; Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine environments. Microb Ecol 4:9–25
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  32. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes,, 2. IV:3352–3378 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  33. Wirsen C. O., Jannasch H. W., Molyneaux S. J. 1993; Chemosynthetic microbial activity at Mid-Atlantic Ridge hydro-thermal vent sites. J Geophys Res 98:9693–9703
    [Google Scholar]
  34. Wood A. P., Kelly D. P. 1989; Isolation and characterization of Thiobacillus thyasiris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasiraflexuosa . Arch Microbiol 152:160–166
    [Google Scholar]
  35. Wood A. P., Kelly D. P. 1993; Reclassification of Thiobacillus thyasiris as Thiomicrospira thyasirae comb. nov. An organism exhibiting pleomorphism in response to environmental conditions. Arch Microbiol 159:45–47
    [Google Scholar]
  36. Zhang J.-Z., Millero F. J. 1993; The products from the oxidation of H2S in seawater. Geochim Cosmochim Acta 57:1705–1718
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-385
Loading
/content/journal/ijsem/10.1099/00207713-49-2-385
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error