1887

Abstract

Strains 61A(T = type strain) and 61B2, the first bacteriochlorophyll (BChl) -containing obligate aerobes to be classified in the -subclass of the , were isolated from river water. The strains were originally isolated as degraders of poly(hexamethylene carbonate) (PHC). The organisms can utilize PHC and some other biodegradable plastics. The strains grow only under aerobic conditions. Good production of BChl a and carotenoid pigments is achieved on PHC agar plates and an equivalent production is observed under oligotrophic conditions on agar medium. Spectrometric results suggest that BChl a is present in light-harvesting complex I and the photochemical reaction centre. The main carotenoids are spirilloxanthin and its precursors. Analysis of the 16S rRNA gene sequence indicated that the phylogenetic positions of the two strains are similar to each other and that their closest relatives are the genera , and with similarities of 96·3, 96·2 and 96·1%, respectively. The cells are motile, straight rods and contain poly-- hydroxybutyrate granules. Ubiquinone-8 is the predominant quinone. Vitamins are not required for growth. The G+C content of genomic DNA is 66·2–66·3 mol%. Genetic and phenotypic features suggest that the strains represent a new genus in the -subclass which is evenly distant from known genera. Consequently, the name gen. nov., sp. nov. is proposed for the strains; the type strain of Roseateles depolymerans is strain 61A(= DSM 11813).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-449
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-449.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-449&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  2. Cogdell R. J., Lindsay J. G., Valentine J., Durant I. 1982; A further characterisation of the B890 light-harvesting pigmentprotein complex from Rhodospirillum rubrum strain S1. FEBS Lett 150:151–154
    [Google Scholar]
  3. Evans W. R., Fleischman D. E., Calvert H. E., Pyati P. V., Alter G. M., Rao N. S. S. 1990; Bacteriochlorophyll and photosynthetic reaction center in Rhizobium strain BTAi I. Appl Environ Microbiol 56:3445–3449
    [Google Scholar]
  4. Fuerst J. A., Hawkins J. A., Holmes A., Sly L. I., Moore C. J., Stackebrandt E. 1993; Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43:125–134
    [Google Scholar]
  5. Green P. N., Bousfield I. J. 1983; Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodium (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 33:875–877
    [Google Scholar]
  6. Hanada S., Hiraishi A., Shimada K., Matsuura K. 1995a; Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45:676–681
    [Google Scholar]
  7. Hanada S., Hiraishi A., Shimada K., Matsuura K. 1995b; Isolation of Chloroflexus sp. and related thermophilic photosynthetic bacteria from hot springs using an improved isolation procedure. J Gen Appl Microbiol 41:199–130
    [Google Scholar]
  8. Hanada S., Kawase Y., Hiraishi A., Takaichi S., Matsuura K., Shimada K., Nagashima K. V. P. 1997; Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Int J Syst Bacteriol 47:408–113
    [Google Scholar]
  9. Harashima K., Nakagawa M., Murata N. 1982; Photochemical activity of bacteriochlorophyll in aerobically grown cells of heterotrophs Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101). Plant Cell Physiol 23:185–193
    [Google Scholar]
  10. Harashima K., Kawazoe K., Yoshida I., Kamata H. 1987; Light-stimulated aerobic growth of Erythrobacter species OCh 114. Plant Cell Physiol 28:365–374
    [Google Scholar]
  11. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. Gen Appl Microbiol 42:457–469
    [Google Scholar]
  12. Imhoff J. F., Trüper H. G. 1989; Genus Rhodocyclus Pfennig 1978, 285al. In Bergey’s Manual of Systematic Bacteriology, 31678–1682 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams Wilkins;
    [Google Scholar]
  13. Inoue A., Shigematsu T., Hidaka M., Masaki H., Uozumi T. 1996; Cloning, sequencing and transcriptional regulation of the draT and draG genes of Azospirillum lipoferum FS. Gene 170:101–106
    [Google Scholar]
  14. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196
    [Google Scholar]
  15. Kellenberger E., Ryter A., Sechand J. 1958; Electron microscopic study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 4:671–678
    [Google Scholar]
  16. Kersters K., De Ley J. 1984; Genus Alcaligenes Castellani and Chalmers 1919, 936al. In Bergey’s Manual of Systematic Bacteriology 1361–373 Krieg N. R., Holt J. G. Baltimore: Williams Wilkins;
    [Google Scholar]
  17. Kortlüke C., Breese K., Gad’on N., Labahn A., Drews G. 1997; Structure of the puf operon of the obligately aerobic, bacteriochlorophyll acontaining bacterium Roseobacter denitrificans OCh114 and its expression in a Rhodobacter capsulatus puf puc deletion mutant. J Bacteriol 179:5247–5258
    [Google Scholar]
  18. Malmqvist Å., Welander T., Moore E., Ternström A., Molin G., Stenström I.-M. 1994; Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol 17:58–64
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  20. Nishimura Y., Shimadzu M., lizuka H. 1981; Bacteriochlorophyll formation in radiation-resistant Pseudomonas radiora. J Gen Appl Microbiol 27:427–430
    [Google Scholar]
  21. Okamura K., Mitsumori F., Ito O., Takamiya K., Nishimura M. 1986; Photophosphorylation and oxidative phosphorylation in intact cell and chromatophores of an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. J Bacteriol 168:1142–1146
    [Google Scholar]
  22. Saitoh S., Nishimura Y. 1996; Taxonomic characterization of novel aerobic bacteriochlorophyll-containing bacteria isolated from soil. J Gen Appl Microbiol 42:121–140
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Shiba T. 1984; Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. OCh 114. Gen Appl Microbiol 30:239–244
    [Google Scholar]
  25. Shiba T. 1989; Overview of the aerobic photosynthetic bacteria. In Aerobic Photosynthetic Bacteria1–8 Harashima K., Shiba T., Murata N. Berlin: Springer;
    [Google Scholar]
  26. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145
    [Google Scholar]
  27. Shiba T., Simidu U. 1982; Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217
    [Google Scholar]
  28. Shimada K. 1995; Aerobic anoxygenic phototrophs. In Anoxygenic Photosynthetic Bacteria105–122 Blankenship R. E., Madigan M. T., Bauer C. E. Dordrecht: Kluwer;
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Suyama T., Tokiwa Y. 1997; Enzymatic degradation of an aliphatic polycarbonate, poly(tetramethylene carbonate). Enzyme Microb Technol 20:122–126
    [Google Scholar]
  31. Suyama T., Hosoya H., Tokiwa Y. 1998; Bacterial isolates degrading aliphatic polycarbonates. FEMS Microbiol Lett 161:255–261
    [Google Scholar]
  32. Takaichi S. 1993; Usefulness of field desorption mass spectrometry in determining molecular masses of carotenoids, natural carotenoid derivatives and their chemical derivatives. Org Mass Spectrom 28:785–788
    [Google Scholar]
  33. Takaichi S., Shimada K. 1992; Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213:374–385
    [Google Scholar]
  34. Takaichi S., Furihata K., Harashima K. 1991; Light-induced changes of carotenoid pigments in anaerobic cells of the aerobic photosynthetic bacterium, Roseobacter denitrificans (Erythrobacter species OCh 114): reduction of spheroidenone to 3,4-dihydrospheroidenone. Arch Microbiol 155:473–476
    [Google Scholar]
  35. Takamiya K., Okamura K. 1984; Photochemical activities and photosynthetic ATP formation in membrane preparation from a facultative methylotroph, Protaminobacter ruber strain NR-1. Arch Microbiol 140:21–26
    [Google Scholar]
  36. Tilden A. R., Becker M. A., Amma L. L., Arciniega J., McGaw A. K. 1997; Melatonin production in an aerobic photosynthetic bacterium: an evolutionarily early association with darkness. Pineal Res 22:102–106
    [Google Scholar]
  37. Turova T. P., Burkal’tseva M. V., Bulygina E. S., Gorlenko V. M. 1995; Phylogenetic position of freshwater erythrobacteria studied by 5S rRNA analysis. Microbiology (English translation of Mikrobiologiya) 64:662–666
    [Google Scholar]
  38. Urakami T., Araki H., Suzuki K., Komagata K. 1993; Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov. Int J Syst Bacteriol 43:504–513
    [Google Scholar]
  39. Wakao N., Yokoi N., Isoyama N. 8 other authors 1996; Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893
    [Google Scholar]
  40. Weisburg W. G., Burns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. Bacteriol 173:697–703
    [Google Scholar]
  41. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb, nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450
    [Google Scholar]
  42. Young J. W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototrophic rhizobium strain BTAi 1 by chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277
    [Google Scholar]
  43. Yurkov V. V., Gemerden H. V. 1993; Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159:84–89
    [Google Scholar]
  44. Yurkov V. V., Gorlenko V. M. 1992; A new genus of freshwater aerobic bacteriochlorophyll a-containing bacteria, Roseococcus gen. nov. Microbiology (English translation of Mikrobiologiya) 60:628–632
    [Google Scholar]
  45. Yurkov V. V., Gorlenko V. M. 1993; New species of aerobic bacteria from the genus Erythromicrobium containing bacteriochlorophyll a. Microbiology (English translation of Mikrobiologiya) 61:163–168
    [Google Scholar]
  46. Yurkov V. V., Gorlenko V. M., Kompantseva E. I. 1993; A new type of freshwater orangecolored bacterium Erythromicrobium gen. nov., containing bacteriochlorophyll a. Microbiology (English translation of Mikrobiologiya) 61:256–260
    [Google Scholar]
  47. Yurkov V., Stackebrandt E., Holmes A. 7 other authors 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilusgen nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434
    [Google Scholar]
  48. Yurkov V., Stackebrandt E., Buss O., Vermeglio A., Gorlenko V., Beatty J. T. 1997; Reorganization of the genus Erythromicrobium: description of ‘Erythromicrobium sibiricum’ as Sandaracinobacter sibiricus gen. nov., sp. nov., and of ‘Erythromicrobium ursincola’ as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47:1172–1178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-449
Loading
/content/journal/ijsem/10.1099/00207713-49-2-449
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error