1887

Abstract

An isolate of a Gram-positive bacterium, designated strain Ben 106, was obtained in pure culture by micromanipulation of a biomass sample obtained from a laboratory-scale sequencing batch reactor. This isolate grew axenically as cocci or clusters of cocci arranged in regular tetrads and was morphologically similar to the dominant organism observed in the biomass. This morphology resembled that of some Gram-positive and -negative bacteria and the so-called 'G-bacteria' commonly seen in activated sludge samples. Strain Ben 106 is a non-motile, facultative anaerobe. It is oxidase-negative, catalase-positive and is capable of reducing nitrate. This organism can grow between 20 and 37 °C, with an optimum temperature of 25 °C. The pH range for growth is between 6·0 and 9·0, with an optimum pH of 7·5. The isolate stained positively for intracellular polyphosphate granules. The diagnostic diamino acid of the peptidoglycan is -diaminopimelic acid (-Apm) with a glycine moiety at position 1 of the peptide subunit, which characterizes the presence of a rare peptidoglycan (type A3-′). Two menaquinones, MK-9(H) and MK-7(H), are present and the main cellular fatty acid is 12-methyltetradecanoic acid. The G+C content is 74 mol%. From phenotypic characteristics and 16S rDNA sequence analysis, the isolate differed sufficiently from its closest phylogenetic relatives, namely , , , and in the A1 subdivision of the Gram-positive bacteria (i.e. with a high G+C content), suborder , to be placed in a new genus, , as gen. nov., sp. nov. The type strain is Ben 106 (= ACM 5119).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-459
1999-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-459.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-459&mimeType=html&fmt=ahah

References

  1. Bond P. L., Hugenholtz P., Kellar J., Blackall L. L. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916
    [Google Scholar]
  2. Carucci A., Majone M., Ramadori R., Rossetti S. 1994; Dynamics of phosphorus and organic substrates in anaerobic and aerobic phases of a sequencing batch reactor. Water Sci Technol 30:237–246
    [Google Scholar]
  3. Cech J. S., Hartman P. 1993; Competition between poly-phosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res 27:1219–1225
    [Google Scholar]
  4. Charfreitag O., Collins M. D., Stackebrandt E. 1988; Reclas-sification of Arachnia propionica as Propionibacterium pro-pionicus comb. nov. Int J Syst Bacteriol 38:354–357
    [Google Scholar]
  5. Collins M. D., Cockcroft S., Wallbanks S. 1994; Phylogenetic analysis of a new LL-diaminopimelic acid-containing coryneform bacterium from herbage, Nocardioides plantarum sp. nov. Int J Syst Bacteriol 44:523–526
    [Google Scholar]
  6. Cummins C. S., Moss C. W. 1990; Fatty acid composition of Propionibacterium propionicus (Arachnia propionica). int J Svst Bacteriol 40:307–308
    [Google Scholar]
  7. Felsenstein J. 1993; phylip (Phylogeny Inference Package) version 3.5.1. Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  8. Jenkins D., Tandoi V. 1991; The applied microbiology of enhanced biological phosphate removal - accomplishments and needs. Water Res 25:1471–1478
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. Kataoka N., Tokiwa T., Tanaka Y., Takeda K., Suzuki T. 1996; Enrichment culture and isolation of slow growing bacteria. Appl Microbiol Biotechnol 45:771–777
    [Google Scholar]
  11. Knight G. C., Seviour E. M., Seviour R. J., Soddell J. A., Lindrea K. C., Strachan W., DeGrey B., Bayly R. C. 1995; Development of the microbial community of a full scale nutrient removal activated sludge plant during start up. Water Res 29:2085–2093
    [Google Scholar]
  12. Liu W.-T., Mino T., Nakamura K., Matsuo T. 1996; Glycogen accumulating populations and its anaerobic substrates uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Water Res 30:75–82
    [Google Scholar]
  13. van Loosdrecht M. C. M., Hooijmans C. M., Brdjanovic D., Heijnen J. J. 1997; Biological phosphate removal processes. Appl Microbiol Biotechnol 48:289–296
    [Google Scholar]
  14. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  15. Maszenan A. M., Seviour R. J., Patel B. K., C, Rees G. N., McDougall B. M. 1997; Amaricoccus gen. nov., a gram-negative coccus occurring in regular packages or tetrads isolated from activated sludge biomass. Description of four species belonging to the genus. Int J Syst Bacteriol 47:727–734
    [Google Scholar]
  16. Matsuo Y. 1994; Effect of the anaerobic solid retention time on enhanced biological phosphorus removal. Water Sci Technol 30:193–202
    [Google Scholar]
  17. Matsuzawa Y., Mino T. 1991; Role of glycogen as an intracellular carbon reserve of activated sludge in the competitive growth of filamentous and non filamentous bacteria. Water Sci Technol 23:899–905
    [Google Scholar]
  18. Miller E. R., Woese C. R., Brenner S. 1991; Description of the erythromycin-producing bacterium Arthrobacter sp. strain NRRL B-3381 as Aeromicrobium erythreum gen. nov., sp. nov. Int J Syst Bacteriol 41:363–368
    [Google Scholar]
  19. Nakamura K., Masuda K., Mikami E. 1991; Isolation of a new type of polyphosphate accumulating bacterium and its phosphate removal characteristics. J Ferment Technol 71:258–263
    [Google Scholar]
  20. Nakamura K., Hiraishi A., Yoshimi Y., Kawaharasaki M., Masuda K., Kamagata Y. 1995a; Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17–22
    [Google Scholar]
  21. Nakamura K., Ishikawa S., Kawaharasaki M. 1995b; Phosphate uptake and release activity in immobilized polyphosphate accumulating bacterium Microlunatus phosphovorus strain NM-1. J Ferment Technol 80:377–382
    [Google Scholar]
  22. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxo-nomic applications. J Appl Bacteriol 41:335–340
    [Google Scholar]
  23. Painter H. A. 1983; Metabolism and physiology of aerobic bacteria and fungi. In Ecological Aspects of Used-Water Treatment. 2 Biological Activities and Treatment Processes11–25 Curds C. R., Hawks H. A. London: Academic Press;
    [Google Scholar]
  24. Patel B. K. C., Andrews K. T., Ollivier B., Mah R. A., Garcia J. L. 1995; Re-evaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA gene. FEMS Microbiol Lett 134:115–119
    [Google Scholar]
  25. Pitcher D. G., Collins M. D. 1991; Phylogenetic analysis of some LL-diaminopimelic acid-containing coryneform bacteria from human skin : description of Propionibacterium innocuum sp. nov. FEMS Microbiol Lett 84:295–300
    [Google Scholar]
  26. Porteous L. A., Armstrong J. L., Seidler R. J., Watrud L. S. 1994; An effective method to extract DNA from environment samples for polymerase chain reaction amplification and DNA fingerprint analysis. Curr Microbiol 29:301–307
    [Google Scholar]
  27. Randall A. A. 1994; The effect of substrate chemistry on enhanced biological phosphorus removal intracellular phosphate form and location and the resulting population structure of sequencing batch reactors receiving synthetic wastewater. PhD thesis, Auburn University, AL; USA:
    [Google Scholar]
  28. Rees G. N., Vasiliadis G., May J. W., Bayly R. C. 1992; Differentiation of polyphosphate and poly-β-hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge. FEMS Microbiol Lett 94:171–174
    [Google Scholar]
  29. Schaal K. P. 1986; Genus Arachnia Pine and Georg 1969, 269AL. In Bergey’s Manual of Systematic Bacteriology 21332–1342 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  30. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:406–477
    [Google Scholar]
  31. Schleifer K. H., Seidl P. H. 1985; Chemical composition and structure of murein. In Chemical Methods in Bacterial Sys-tematics201–219 Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  32. Schumann P., Prauser H., Rainey F. A., Stackebrandt E., Hirsch P. 1997; Friedmanniella antarctica gen. nov., sp. nov., an ll-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 47:278–283
    [Google Scholar]
  33. Skerman V. B. D. 1968; A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297
    [Google Scholar]
  34. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actino-bacteria classis nov. Int J Syst Bacteriol 47:479–491
    [Google Scholar]
  35. Takii S. 1977a; Accumulation of reserve polysaccharide in activated sludge treating carbohydrate wastes. Water Res 11:79–83
    [Google Scholar]
  36. Takii S. 1977b; Bacterial characteristic of activated sludges treating carbohydrate waste. Water Res 11:85–89
    [Google Scholar]
  37. Tamura T., Yokota A. 1994; Transfer of Nocardioides fastidiosa Collins and Stackebrandt 1989 to the genus Aero-microbium as Aeromicrobium fastidiosum comb. nov. Int J Syst Bacteriol 44:608–611
    [Google Scholar]
  38. Tamura T., Takeuchi M., Yokota A. 1994; Luteococcus japonicus gen. nov., sp. nov., a new gram-positive coccus with ll-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 44:348–356
    [Google Scholar]
  39. Ubukata Y. 1994; Some physiological characteristics of a phosphate removing bacterium isolated from anaerobic/ aerobic activated sludge. Water Sci Technol 30:229–235
    [Google Scholar]
  40. Ubukata Y., Takii S. 1994; Induction method of excess phosphate accumulation for phosphate removing bacteria isolated from anaerobic/aerobic activated sludge. Water Sci Technol 30:221–227
    [Google Scholar]
  41. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K.-H. 1994; Development of rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60:792–800
    [Google Scholar]
  42. Wanner J. 1994 Activated Sludge Bulking and Foaming Control Lancaster: Technomic Publishing Company;
    [Google Scholar]
  43. Williams T. M., Unz R. F. 1985; Isolation and characterization of filamentous bacteria present in bulking activated sludge. Appl Microbiol Biotechnol 22:273–282
    [Google Scholar]
  44. Winker S., Woese C. R. 1991; A definition of the domain Archaea, Bacteria and Eucarya in terms of small ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310
    [Google Scholar]
  45. Yokota A., Tamura T., Takeuchi M., Weiss N., Stackebrandt E. 1994; Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. Int J Syst Bacteriol 44:579–582
    [Google Scholar]
  46. Yoshimi Y., Hiraishi A., Nakamura K. 1996; Isolation and characterization of Microsphaera multipartita gen. nov., sp. nov., a polysaccharide-accumulating gram-positive bacterium from activated sludge. Int J Syst Bacteriol 46:519–525
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-459
Loading
/content/journal/ijsem/10.1099/00207713-49-2-459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error