1887

Abstract

A group of 91 moderately halophilic, Gram-positive, rod-shaped strains were isolated from enrichments prepared from Dead Sea water samples collected 57 years ago. These strains were examined for 117 morphological, physiological, biochemical, nutritional and antibiotic susceptibility characteristics. All strains formed endospores and were motile, strictly aerobic and positive for catalase and oxidase. They grew in media containing 5–25% (w/v) total salts, showing optimal growth at 10% (w/v). Eighteen strains were chosen as representative isolates and were studied in more detail. All these strains had diaminopimelic acid in the cell wall and a DNA G+C content of 39·0–42·8 mol%; they constitute a group with levels of DNA-DNA similarity of 70-100%. The sequences of the 16S rRNA genes of three representative strains (strains 123, 557 and 832) were almost identical (99·9%), and placed the strains in the low G+C content Gram-positive bacteria. On the basis of their features, these isolates should be regarded as members of a new species of the genus , for which the name sp. nov. is proposed. The type strain is strain 123 (= DSM 12325 = ATCC 700626 = CIP 105609 = CECT 5066).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-521
1999-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-521.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-521&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Dewhirst F. E., Paster B. J., Volcani B. E., Ventosa A. 1996; Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 62:3779–3786
    [Google Scholar]
  2. Ash C., Farrow A. E., Allbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergeys Manual of Systematic Bacteriology 21105–1139 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA–DNA hybridization. Antonie Leeuwenhoek 36:461–474
    [Google Scholar]
  5. Fahmy F., Flossdorf J., Claus D. 1985; The DNA base composition of the strains of the genus Bacillus. Syst Appl Microbiol 6:60–65
    [Google Scholar]
  6. Fendrich C., Hippe H., Gottschalk G. 1990; Clostridium halophilum sp. nov. and C litorale sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction. Arch Microbiol 154:127–132
    [Google Scholar]
  7. Garabito M. J., Arahal D. R., Mellado E., Marquez M. C., Ventosa A. 1997; Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741
    [Google Scholar]
  8. Garcia M. T., Ventosa A., Ruiz-Berraquero F., Kocur M. 1987; Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 37:251–256
    [Google Scholar]
  9. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N. A. 1998; Virgibacillus a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48:99–106
    [Google Scholar]
  10. Jaccard P. 1908; Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44:223–270
    [Google Scholar]
  11. Javor B. 1989; Dead Sea. In Hyper saline Environments -Microbiology and Biogeochemistry282–291 Berlin: Springer;
    [Google Scholar]
  12. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology655–681 Gerhardt P. Washington: DC : American Society for Microbiology;
    [Google Scholar]
  13. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. In Halophilic Bacteria I109–140 Rodriguez-Valera F. Boca Raton: FL: CRC Press;
    [Google Scholar]
  14. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxy-ribonucleic acid from micro-organisms. J Mol Biol 3:208–218
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  17. Nieto J. J., Fernández-Castillo R., Márquez M. C., Ventosa A., Quesada E., Ruiz-Berraquero F. 1989; Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390
    [Google Scholar]
  18. Oren A. 1988; The microbial ecology of the Dead Sea. In Advances in Microbial Ecology 10193–229 Marshall K. C. New York: Plenum;
    [Google Scholar]
  19. Oren A. 1993; Ecology of extremely halophilic microorganisms. In The Biology of Halophilic Bacteria25–53 Vreeland R. H., Hochstein L. I. Boca Raton: FL: CRC Press;
    [Google Scholar]
  20. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2.217–296 Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  21. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA base composition and levels of DNA–DNA hybridization. In Chemical Methods in Bacterial Systematics67–93 Goodfellow M., Minnikin E. London: Academic Press;
    [Google Scholar]
  22. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila a new species of moderately halophilic bacteria. Int J Syst Bacteriol 40:261–267
    [Google Scholar]
  23. Rohlf F. J. 1993; NTSYS-pc. Numerical Taxonomy and Multi-variate Analysis System, version 1 80 New York: Exeter Software;
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sneath P. H. A., Johnson R. 1972; The influence on numerical taxonomy similarities of errors in microbiological tests. J Gen Microbiol 72:377–392
    [Google Scholar]
  26. Sneath P. H. A., Sokal R. R. 1973; Numerical Taxonomy. The Principles and Practice of Numerical Classification San Francisco: W. H. Freeman;
    [Google Scholar]
  27. Spring S., Ludwig W., Màrquez M. C., Ventosa A., Schleifer K.-H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496
    [Google Scholar]
  28. Springer N., Ludwig W., Amann R., Schmidt H. J., Görtz H. D., Schleifer K.-H. 1993; Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Nati Acad SciUSA 90:9892–9895
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  30. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromato-graphy. Appl Microbiol 28:226–231
    [Google Scholar]
  31. Van de Peer Y., Van den Broeck I., De Rijk P., De Wachter R. 1994; Database on the structure of small ribosomal sub unit RNA. Nucleic Acids Res 22:3488–3494
    [Google Scholar]
  32. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  33. Ventosa A., Garcia M. T., Kamekura K., Onishi H., Ruiz-Berraquero F. 1989; Bacillus halophilus sp. nov., a moderately halophilic Bacillus species. Syst Appl Microbiol 12:162–166
    [Google Scholar]
  34. Ventosa A., Arahal D. R., Volcani B. E. 1999; Studies on the microbiota of the Dead Sea– 50 years later. In Microbiology and Biogeochemistry of Hypersaline Environments139–147 Oren A. Boca Raton: FL: CRC Press;
    [Google Scholar]
  35. Volcani B. E., Wilkansky B. 1936; Life in the Dead Sea. Nature 138:467
    [Google Scholar]
  36. Volcani B. E., Elazari-Volcani B. 1940; Studies on the Micro-flora of the Dead Sea. PhD thesis Jerusalem Hebrew University;
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-521
Loading
/content/journal/ijsem/10.1099/00207713-49-2-521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error